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A B S T R A C T 

Aim: Machine learning techniques are rapidly used in the area of medical research due to its 
impressive results in diagnosis and prediction of diseases. The objective of this study is to 
evaluate the performance of SVM classifier in identification of liver disorder by comparing it 
with Naive Bayes algorithm. Methods and Materials: A total of 31619 samples are collected 
from three liver disease datasets available in kaggle. These samples are divided into training 
dataset (n = 22133 [70%]) and test dataset (n = 9486 [30%]). Accuracy, precision, specificity 
and sensitivity values are calculated to quantify the performance of the SVM algorithm. 
Results: SVM achieved accuracy, precision, sensitivity and specificity of 73.64%, 97.82%, 
97.56% and 69.77% respectively compared to 57.31%, 41.39%, 94.87% and 37.20% by Naive 
Bayes algorithm. Conclusion: In this study it is found that the RBF SVM algorithm performed 
better than the Naive Bayes algorithm in liver disorder detection of the datasets considered. 
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Introduction 

Liver is one of the primary organs of the human body. It 

is involved in major functions like metabolism and catabolism 

of complex molecules within our system. If the liver does not 

work well, it can affect the functioning of the entire body 

(Haque et al. 2018). Early and accurate detection of liver 

disorder is a necessity in today's clinical scenario (Naseem et 

al. 2020; Abdar et al. 2017). This detection process will take 

more time and also sometimes man made errors lead to wrong 

prediction of liver disease. Liver diseases are the leading 

reason behind world death that impacts the huge amount of 

humans around the world. Machine learning techniques are 

used both in hospitals and medical industries for large 

datasets (Biswas et al. 2018). To reduce the risk of life it is 

very much necessary to detect the liver disorder at the earlier 

stage.  

*Corresponding author: kirupaganapathy.sse@saveetha.com 

The authors (Rabbi et al. 2020) discussed the importance 

of liver disorder detection using machine learning algorithms. 

Recently a lot of researches have been done on a variety 

of liver diseases using machine learning techniques for liver 

disease detection. 53 research articles were published in IEEE 

Xplore and 6490 articles found in Google scholar. In recent 

times surveys of machine learning algorithms for disease were 

explored mostly as they predicted 97.10% of output accuracy 

using Naive Bayes algorithm (M pasha 2017). From the survey, 

it is observed that many research works involve prevention 

and treatment of hepatitis disease using wrapper methods 

and SVM. To reduce noise features in the dataset wrapper 

method is used (Roslina and Noraziah 2010). (Omar S. Soliman 

et al, 2014) used hybrid classification technique for diagnosis 

liver diseases and compared the results with the novel LS-SVM 

Modified Particle Swarm Optimization algorithm. (Asrani et 

al. 2019) proposed a classification model for liver diagnosis, 

with two datasets of liver patients. Eleven data mining 

algorithms were used, and the classifiers results were tested 
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for accuracy, precision, and recall. (Fatima and Pasha 2017) 

performed a survey on diagnosis of various diseases using the 

SVM algorithm.  

Previously our team has a rich experience in working on 

various research projects across multiple disciplines (Sathish 

and Karthick 2020; Varghese, Ramesh, and Veeraiyan 2019; S. 

R. Samuel, Acharya, and Rao 2020; Venu, Raju, and 

Subramani 2019; M. S. Samuel et al. 2019; Venu, Subramani, 

and Raju 2019; Mehta et al. 2019; Sharma et al. 2019; Malli 

Sureshbabu et al. 2019; Krishnaswamy et al. 2020; 

Muthukrishnan et al. 2020; Gheena and Ezhilarasan 2019; 

Vignesh et al. 2019; Ke et al. 2019; Vijayakumar Jain et al. 

2019; Jose, Ajitha, and Subbaiyan 2020). Now the growing 

trend in this area motivated us to pursue this project.  

Most of the existing works are performed with the data 

collected from particular ethnic groups. Many of the existing 

works analysed the performance of machine learning 

algorithms in a small sample of data. However in the proposed 

work, SVM algorithm performance is analysed using large 

dataset collected from samples worldwide.  

 

Materials and Methods 

This proposed work involves two groups for liver disorder 

detection. Total sample size of group1 and group2 is 31,619. 

The required samples for this analysis is done using G power 

calculation(Kane, Phar, and BCPS n.d.). Minimum power of 

the analysis is fixed as 0.8 and maximum accepted error is 

fixed as 0.5.  

Liver disorder dataset collected from kaggle and UCI 

needs to be processed before applying it to the machine 

learning model. The processed dataset is given for training 

and testing. Data processing includes missing data removal, 

replacement of null values with mean or median values and 

standardization of data. The preprocessed dataset with 

features are given as input to SVM and Naive Bayes Classifier. 

From the total sample size75% of the data is given for training 

and remaining 25% is given for testing. 

In this Indian Liver Patient Dataset (ILDP) is collected 

from Kaggle with a total of 583 patient records. Out of which 

the ILDP contains 416 liver patient records and 167 non liver 

patient records. The records were collected from test 

samples in North East of Andhra Pradesh, India(Jeevan 

Nagaraj n.d.). Class label is represented as 'is_patient' in the 

dataset that divides into groups like liver patient and non liver 

patient. This data set contains 441 male patient and 142 

female patient records. Liver disease Patient Dataset (LDPD) 

is collected from Kaggle with a total of 30691 patient records. 

Out of which the LDPD contains 21917 liver patient records 

and 8774 non liver patient records. The records were 

collected from across the World LIver Patients(Shrivastava 

n.d.). Class labels are represented as a 'selector' in the 

dataset that divides into two groups (liver patient or not). 

Liver Disorder (LD) dataset is collected from UCI Repository 

of Machine Learning with total 345 patient records. The 

records were collected from BUPA Medical Research Ltd (“UCI 

Machine Learning Repository: Liver Disorders Data Set” n.d.). 

The ILDP and LDPD dataset has 10 attributes in common. 

Common attributes are age, gender, Total Bilirubin, Direct 

Bilirubin, total proteins, albumin, Albumin and /Glucose 

ratio, alkaline phosphatase, alanine aminotransferase, and 

alkaline phosphatase (Alk Phos). The age attribute column is 

removed for training and testing of the model as it does not 

contribute much information for classification. The gender 

attribute which is in categorical form is changed to 0 for male 

and 1 for female as it contributes information for 

classification. The LD dataset has 7 attributes such as mean 

capsular volume, alkaline phosphatase, alanine 

aminotransferase, aspartate aminotransferase, glutamyl 

transpeptidase, drinks and selector for Liver Disorder 

classification. All three datasets used in this proposed work 

are suitable for binary classification as given in table 1. 

 

Table 1. Samples, features and classes from various Datasets. 

From LDPD dataset 30691 samples were taken, from ILDP 

dataset 583 were taken and from LD dataset 345 samples were 

taken. All the dataset contains 2 classes (with liver disorder 

and without liver disorder). 

Datasets No of 
Patients 

Features Classes 

Liver disease Patient 
Dataset (LDPD) 

30691 10 2 

Indian Liver Patient 
Dataset (ILDP) 

583 10 2 

Liver Disorder (LD) 345 7 2 

 
Table 2 represents the statistical features extracted from 

the data for training the Learning algorithm. The statistical 

features extracted are mean, standard deviation, minimum, 

25% quantile, 50% quantile, 75% quantile and maximum. The 

learning process of SVM and Naive Bayes classifier is given 

below. 

 

Table 2. Statistical features of the LDPD dataset - Sample. It 

contains Age, Gender, TB, DB, Alkphos, Sgpt, Sgot, Proteins, 

ALB, A/G Ratio as input features. 

 
 

Support Vector Machine (SVM) classifier is used to find an 

optimal hyperplane that has the ability to classify normal and 

liver disease. SVM maps the given data into linearly separable 

and non linearly separable data. If the given data can be 

separated linearly SVM can easily separate two classes 

(Devikanniga, Ramu, and Haldorai 2018). If the given data is 

non-linearly separable then, the datas are mapped into higher 

dimensions to provide better classification performance. The 

separating hyperplane for RBF SVM is given by the equation 

(1) 

𝐻 = 𝑊𝑇𝑋 + 𝑏 
 

 
(1) 
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Where 𝐻 - Hyperplane, 𝑊 - normal vector representing 

position of hyperplane, 𝑋 – input data, 𝑏 - threshold value 

indicating distance between the hyperplane and origin. The 

design of the SVM classifier depends on the hyperplane and 

the associated support vectors. The structure of the RBF SVM 

is given in Fig 1. 

 

 
Fig. 1. Representative structure of RBF SVM with linear 

hyperplane. Illustrates the general classification performed 

by the SVM algorithm 

 

The margin (𝛾) between the planes is given as 𝛾 =
2

||𝑤||
, 

where 𝑤 = √𝑊𝑇𝑊 is also called as L2-norm. Maximizing the 

margin value gives a better classification rate. The 

maximization of margin value is achieved by minimizing the 

L2-norm. The minimization of L2-norm is achieved by 

equation (2) 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

2
||𝑤||

2

𝑇
=

1

2
𝑤𝑇𝑤 

 

 
(2) 
 

Naive-Bayes (NB) classifier assumes a strong 

independence within the feature values. It constructs class 

variables and designs a model classifier based on the features 

(Wayahdi, Tulus, and Lydia 2020). NB is simple with less 

computational complexity and better predicting ability. The 

probability of classifier is given in the equation (3) 

 

𝑃 (
𝐶𝑖

𝑋
) =

𝑃 (
𝑋
𝐶𝑖

) 𝑃(𝐶𝑖)

𝑃(𝑋)
 

 
(3) 
 

Where, 𝑃 (
𝐶𝑖

𝑋
) - Posterior Probability, 𝑃(𝐶𝑖) - Class Prior 

Probability, 𝑃(𝑋) - Predictor Prior Probability, 𝑃 (
𝑋

𝐶𝑖
) - 

Likelihood. In NB the assumption of the probability of 

occurrence of a feature value is independent of all the other 

features.  

The proposed work uses google colab cloud platform for 

testing the RBF SVM and Naive Bayes algorithm. The Python 

programming tool is used for execution of the algorithm. This 

Core i5 processor with 4GB ram.  

From the total sample size 75% of the data with features 

extracted is trained in the RBF SVM and Naive Bayes model. 

For training the model involves a number of iterations to get 

better performance. After training the algorithm, random 

test data is given to the algorithm for accurate identification 

of classes. 

All analyses are conducted using SPSS(“SPSS Software” 

n.d.) and python tools. Descriptive statistics (mean, standard 

deviation and standard error) is carried out for SVM and Naive 

Bayes algorithm. Independent variables in this study are the 

input variables (age, gender, Total Bilirubin, Direct Bilirubin, 

total proteins, albumin, Albumin and /Glucose ratio, alkaline 

phosphatase, alanine aminotransferase, and alkaline 

phosphatase (Alk Phos)). The dependent variables are output 

variables (Accuracy, precision, sensitivity, specificity). 

Independent t-test is performed to compare the performance 

of algorithms. 

 

Results 

In Table 3, it was observed that for LDPD dataset 

detection accuracy, precision, sensitivity and specificity 

performance of SVM was significantly better than Naive 

Bayes. In the LD dataset it was observed that detection 

accuracy, precision and specificity performance of svm was 

significantly better than Naive Bayes except sensitivity. In the 

ILDP dataset it was observed that the detection accuracy and 

sensitivity performance of SVM was significantly better than 

Naive Bayes except precision and specificity 0.001. From the 

three dataset, it was clearly evident that the SVM algorithm 

performed significantly better than Naive Bayes algorithm.  

 

Table 3. Comparison between RBF SVM and Naïve Bayes. 

Accuracy, Precision, Sensitivity and Specificity values obtained 

for SVM and Naive Bayes algorithms are compared for various 

datasets. 

DATA SET SVM NAÏVE BAYES 

Liver disease 
patient 
dataset 
(LDPD) 
(30691,10) 

Accuracy 73.64 Accuracy 57.31 

Precision 97.82 Precision 41.39 

Sensitivity 97.56 Sensitivity 94.87 

Specificity 69.77 Specificity 37.20 

Liver 
Disorder (LD) 
(345,7) 

Accuracy 68.96 Accuracy 63.21 

Precision 56.52 Precision 48.07 

Sensitivity 43.33 Sensitivity 82.33 

Specificity 82.87 Specificity 52.63 

Indian liver 
patient 
Dataset 
(ILDP) 
(583,10) 

Accuracy 65.06 Accuracy 59.58 

Precision 65.97 Precision 86.53 

Sensitivity 97.38 Sensitivity 46.39 

Specificity 74.30 Specificity 85.71 

 
 

 
Fig. 2. Accuracy performance of SVM in different iterations. 

Initially there are fluctuations in accuracy before 6500 

iteration, later it becomes constant after 7000 iterations 
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From Fig 2, it was observed that the increase in iteration 

increased the accuracy of the algorithm. At the 7000th 

iteration, SVM was found to achieve an accuracy of 73.64%. 

Further increase in the iteration values, showed constant 

accuracy by the classifier. Hence the analysis was restricted 

to 7000 iterations. 

 

 
Fig. 3. Precision performance of SVM in different iterations. 

Initially precision increases as the iteration increases and 

above 7000 iterations the precision remains constant 

 

From Fig 3, it was observed that the increase in iteration, 

increased the precision of the algorithm at a certain level. At 

10000th iteration, SVM was found to achieve a high precision 

of 97.82%. Further increase in the iteration, it was found to 

give constant precision by the classifier.  

 
Fig. 4. Sensitivity performance of SVM classifier in different 

iterations. Initially sensitivity increases as the iteration 

increases then gradually decreases and becomes constant 

after 7000 iterations. Sensitivity gradually increases after 

15000 iterations 

 

From Fig 4, it was observed that the increase in iterations 

showed different Sensitivity values at different levels in the 

Support Vector algorithm. At the 20000th iteration, SVM was 

found to achieve a sensitivity of 97.56%.  

 

 
Fig. 5. Specificity analysis of SVM classifier in different 

iterations. As the iterations increases above 10000, the 

specificity becomes constant 

 
From Fig 5, it was observed that the increase in iteration, 

increased the Specificity of the SVM algorithm. At the 7000th 

iteration, SVM was found to achieve a Specificity of 69.77%. 

Further increase in the iteration, the algorithm was found to 

produce constant precision.  

In performing statistical analysis of 10 samples, SVM 

obtained 0.44 standard deviation with 0.14 standard error 

while Naive bayes obtained 0.51 standard deviation with 0.16 

standard error (Table 4). The significance value smaller than 

0.001 showed that our hypothesis holds good. With respect to 

changes in the input values (independent variables) the 

corresponding output values (dependent variables) also 

changes (Table 5).  

 

Table 4. Statistical analysis of RBF SVM and Naïve Bayes. Mean 

accuracy value, Standard deviation and Standard Error Mean 

for SVM and Naive Bayes algorithms are obtained for 10 

iterations. It is observed that the SVM algorithm performed 

better than the Naive Bayes algorithm 

 Groups N Mean Std. 
Deviation 

Std. 
Error 
Mean 

ACCURACY SVM 10 72.6750 0.44498 0.14071 

NAIVE 
BAYES 

10 56.2040 0.51655 0.16335 

 

Table 5. Independent sample test for significance and standard error determination. P value is less than 0.05 considered to be 

statistically significant and 95% confidence intervals were calculated 

Leven’s Test for Equality of Variance t-test for Equality of Variance 95% Confidence Interval of the 
difference 

Accuracy  F sig. t dif sig(2-
tailed) 

Mean 
difference 

Std. Error 
Difference 

lower upper 

Equal 
Variance 
assumed 

0.70
6 

0.412 74.211 18 0.000 16.57000 0.2232B 16.100900 17.03910 

Equal 
variance not 
assumed 

  74.211 16.217 0.000 16.57000 0.2232B 16.09717 17.04283 
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Fig. 6. Comparison of SVM algorithm and Naive Bayes classifier in terms of mean accuracy. The mean accuracy of SVM is better than 

Naive Bayes and the standard deviation of SVM is slightly better than Naive bayes. X Axis: SVM vs Naive bayes Algorithm Y Axis: Mean 

accuracy of detection ± 1 SD 

 

Independent t-test was used to compare the accuracy of 

two algorithms and a statistically significant difference was 

noticed P < 0.001 The SVM model obtained 73.64% accuracy 

(Fig 6). Decision tree (Jin, Kim, and Kim 2014), NB tree 

(Alfisahrin and Mantoro 2013), and decision stump(Nahar and 

Ara 2018) techniques obtained an accuracy of 69.40%, 67.01% 

and 70.67% respectively. When compared with the other 

algorithms performance of the proposed SVM technique 

achieved better performance than naive bayes classifier. 

 

Discussion 

In this study, we observed that RBF SVM appears to be 

better than Naive Bayes classifier with an accuracy of 73.64 

% (p<0.05). In this analysis, performance of SVM and NB is 

analyzed in classifying liver disease from the dataset obtained 

from Kaggle and UCI repository. These datasets contain 

different attributes to define the disease condition and also 

have varying ratios of normal and affected people. The 

proposed work signifies that RBF SVM performs better 

classification compared to NB classifier.  

For the datasets considered in this study, the SVM 

algorithm is able to classify liver disorders with moderate 

accuracy. Minhas et al proposed a multiclass linear SVM in 

classifying fatty liver diseases and found to achieve 95% 

accuracy(Minhas et al. 2012). The direct comparison between 

the proposed work and previous works poses a great difficulty 

because of the difference in the type of liver disease, total 

number of classes and also amount of data present in the 

dataset. The analysis performed by Huang et al utilized a 

balanced dataset for classifying liver disease and found to 

achieve 87.5% sensitivity (Huang et al. 2010). Zhou et al 

utilized an imbalanced dataset containing 52 normal and 69 

liver diseased images and achieved an 81% sensitivity (Zhou, 

Wang, and Wang 2012). From the above articles it can be 

observed that the performance of the methods varies 

depending on balanced or imbalanced dataset used for 

analysis. Wang et al performed classification on the 

imbalanced dataset containing 24 normal and 59 liver disease 

images and achieved sensitivity of 92% (Wang et al. 2013). 

Indicating that the increased ratio of diseased data to the 

normal data could increase the sensitivity value of the 

algorithm in detecting diseased subjects precisely. In our 

analysis we utilized around 21917 data values of normal 

subjects and 8774 data of diseased subjects respectively. It is 

observed that the methods used in our analysis both SVM and 

NB are found to have the ability to handle the imbalanced 

dataset and provide better sensitivity 97% and 94% 

respectively. 

In the analysis made by Ribeiro et al they have used 

images of 40 normal and 35 liver disease subjects. Their 

results indicate that SVM has produced sensitivity of 93.54% 

(Ribeiro, Tato Marinho, and Sanches 2012). This indicates that 

even with the imbalanced dataset the number of                         

non-diseased subjects is considered to be high compared to 

diseased subjects. This above article is in pair with the 

proposed analysis as the data ratio of normal to disease 

subjects is high. 

Our institution is passionate about high quality evidence 

based research and has excelled in various fields 

((Vijayashree Priyadharsini 2019; Ezhilarasan, Apoorva, and 

Ashok Vardhan 2019; Ramesh et al. 2018; Mathew et al. 2020; 

Sridharan et al. 2019; Pc, Marimuthu, and Devadoss 2018; 

Ramadurai et al. 2019). We hope this study adds to this rich 

legacy.  

SVM fails to perform when the target classes are 

overlapping. It takes a huge amount of time to train when the 

dataset size is large. SVM is not computationally efficient 
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when the dataset is very large.In future the SVM algorithms 

accuracy can be improved by adding more data in the training 

sets, using multiclass SVM, and by combining it with other ANN 

methods. Also, multi dimensional data can be converted into 

binary data to improve accuracy. 

 

Conclusion 

Accurate detection of liver disease reduces the risk of life 

threat. From the present study, it suggests that SVM provides 

significantly better performance in detecting liver disease 

when compared to Naive Bayes. SVM produced an accuracy of 

73.64% compared to the Naive bayes accuracy of 57.31% from 

the three datasets.  
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