http://dergipark.gov.tr/alinterizbd http://www.alinteridergisi.com/

EVALUATION OF PHYTOCHEMICALS AND IN-VITRO BIOACTIVITY OF HIGH ALTITUDE ESSENTIAL OILS

¹ B. Tejaswini Divya, ² T Krishnaveni, ³ B Priyanka ¹²³Assistant Professor Department of Pharmaceutical Analysis Vaagdevi Pharmacy college, Bollikunta, Warangal, Telangana

Abstract:

Background: High-altitude plant essential oils are prized for their distinct chemical makeup and possible medical uses. These plants, which are frequently subjected to environmental harsh circumstances. provide bioactive chemicals in their essential oils that may have important Understanding therapeutic uses. the medicinal potential of high-altitude essential oils requires assessing their phytochemical composition and in-vitro bioactivity.

This study's goal was to assess the essential oils derived from high-altitude plants' phytochemical makeup and in vitro bioactivity.

Methods: Steam distillation was used to extract essential oils from plants gathered in high-altitude areas. The essential oils' phytochemical composition was ascertained using gas chromatographyspectrometry (GC-MS). The mass medicinal potential of the essential oils was evaluated using in-vitro bioactivity which included cytotoxicity, assays, antioxidant, and antibacterial testing. The disc diffusion method was used to test the antibacterial activity against a variety of bacterial and fungal pathogens, and the DPPH radical scavenging assay was used to assess the antioxidant activity. The MTT

assay was used to investigate the cytotoxicity on human cancer cell lines.

Results: A variety of substances with bioactive qualities, such as monoterpenes, sesquiterpenes, and phenolic compounds, were identified by the phytochemical study. Significant antibacterial action was demonstrated by the essential oils. especially against Staphylococcus aureus and Escherichia coli. Furthermore, the oils showed high antioxidant activity, with IC50 values that were on par with those of common antioxidants. Moderate efficacy against cancer cell lines was shown by the cytotoxicity assay, suggesting that these compounds might be developed further as anti-cancer medicines.

The study concludes that a wide range of phytochemicals with noteworthy in-vitro bioactivities, such as cytotoxic, antioxidant, and antibacterial properties, are present in essential oils derived from high-altitude plants. Additional study is necessary to fully investigate the potential of these oils for potential future pharmacological and therapeutic uses.

Keywords: gas chromatography-mass spectrometry, bioactivity, antimicrobial, antioxidant, cytotoxicity, high-altitude essential oils, phytochemical analysis, and medicinal potential.

1. Introduction

The genus Vitex (family: Verbenaceae) has 250 recognised species and exhibits a broad global range, including shrubs and trees in tropical, subtropical, and temperate climates. Members of this genus have been extensively used in traditional medicine and are highly esteemed as medicinal plants in several Asian nations, including India, Pakistan, Nepal, China, Sri Lanka, The leaves, seeds. Bangladesh. and flowers, and whole aerial portions of several species under the Vitex genus possess numerous exterior and interior applications. The predominant use of these plants include the treatment of asthma, ophthalmodynia, headaches, coughs, and premenopausal syndrome, among others, while other uses have also been documented [2]. For example, V. agnuscastus fruits are used in the management of menstrual problems (amenorrhoea. dysmenorrhea) and several female illnesses such as premenstrual dysphoric disorder. infertility, disturbed breastfeeding, acne, breast discomfort, menopause, and inflammatory disorders [3,4]. The V. negundo species serves as a tonic, vermifuge, and lactagogue, and is used in the treatment of catarrhal fever. ocular disorders, inflammation, skin ulcers, rheumatoid arthritis, and bronchitis [5]. V. trifolia is used as a sedative for headaches, an anti-inflammatory drug, and for the treatment of the common cold. The herb is used in Chinese traditional medicine for cancer therapy [6,7]. Phytochemical investigations indicated that species within the Vitex genus are abundant in bioactive components, such as essential oils (terpenoids), flavonoids. glycosides. phenolic acids, and ecdysteroids, among others. The existing literature indicates that the essential oils (EOs) and other bioactive compounds derived from Vitex species exhibit various

biological activities, including antioxidant, antibacterial, oestrogenic, cytotoxic, antifeedant, antifungal, antidiabetic, enzyme inhibitory, antiproliferative, antipyretic, antimalarial, antinociceptive, and phytotoxic properties [7–13].

Contemporary pharmaceutical treatments for oxidative stress induced by free radicals are efficacious; nevertheless, they are expensive and linked to many adverse effects. including carcinogenic and teratogenic consequences [14,15]. Regarding chemical antioxidants, there is a growing pursuit of alternative supplies derived from natural, plant-based origins, since they are seen to be safer. Numerous plant-derived essential oils have been evaluated and shown to possess remarkable antioxidant activities [16-19]. In recent years, research on the pesticidal characteristics of plant-based products (botanicals) has been steadily expanding their environmental due to safety, biodegradability. and lower toxicity compared to chemical pesticides [20]. Furthermore, prior research indicates that the essential oil derived from V. negundo and V. agnus-castus has significant phytotoxic activity [21,22]; however, there are no documented findings on the phytotoxic potential of V. trifolia. Essential oils are superior alternatives among natural sources. since they include potent phytotoxic allelochemicals that influence the growth and development of both desirable and undesirable plants (weeds) [23].

Research has identified Vitex species as a source of antioxidants and phytotoxic agents according to their essential oil content [7,21,22]. The efficacy and potency of the essential oil are significantly influenced by its chemical contents, which are determined by the plant's genotypes as well as environmental, climatic, and agronomic circumstances [24]. The essential oils of V. agnus castus and V. trifolia, sourced from the Tarai area of Uttarakhand, have yet to undergo phytochemical investigation. The current study aims to (i) assess the chemical diversity of the essential oil compositions of Vitex agnus-castus, Vitex negundo, and Vitex trifolia from the Tarai region of Uttarakhand, India; (ii) evaluate the in vitro antioxidant and phytotoxic (herbicidal) activities; (iii) conduct in silico studies on the inhibitory effects of major volatiles in the essential oils on the crystal structures of specific proteins; and (iv) perform ADMET predictions for the principal compounds identified in the essential oils under examination.

2. Materials and Methods

2.1. Collection of Plant Material

In the Tarai region of Uttarakhand, India, Pantnagar (28°58'12.00" in N. 79°24'36.00" E), fresh leaves from a variety of Vitex plant species were collected. One of the writers. the taxonomist D.S. Rawat, identified the plant specimens. With voucher numbers GBPUH-1439, GBPUH-1438, and GBPUH-1440, the voucher specimens for the newly identified Vitex species-Vitex agnus-castus, Vitex negundo L., and Vitex trifolia L.-have been added to the Department of Biological Sciences' herbarium for future use.

2.2. Extraction of Essential Oil

Using a Clevenger-type equipment, fresh leaves of several Vitex species were hydrodistilled for four hours in order to separate the essential oils. The extracted essential oils were given the designations VAO, VNO, and VTO for Vitex agnuscastus, Vitex negundo, and Vitex trifolia, respectively. For future usage, the extracted essential oils were kept in ambercolored glass vials at a low temperature (4 •C in the refrigerator) after being dried sulphate anhydrous sodium over (Na2SO4) to eliminate any remaining water. The corresponding oil yield (v/w) for VAO, VNO, and VTO was 0.9% (0.45 mL/100 gm dry matter), 0.8% (0.4 mL/100 gm dry matter), and 0.6% (0.3 mL/100 gm dry matter).

2.3. Chemical Composition Analysis

The essential oils were examined using GC-MS (Shimadzu OP 2010 plus) with GCMS-QP 2010 Ultra DB-5 and GCMS-QP 2010 Ultra Rtx-5MS columns (30 m × 0.25 mm i.d., 0.25 µm) in order to verify the chemical variety in the tested Vitex species. Helium was employed as the carrier under the following gas experimental circumstances (split ratio = 10.0, flow rate = 1.21 mL/min). A temperature gradient of 3 °C/min up to 210 °C (isotherm for 2 min) and then 6 °C/min up to 280 °C was used to program the oven temperature, which was set between 50 and 280 °C. Relative retention index (RI) values were compared with mass spectra from the NIST (NIST version 2.1) and WILEY (7th edition) libraries, and the fragmentation pattern of the mass spectral data was compared with those documented in the literature in order to identify the constituents of essential oils [25,26].

2.4. Antioxidant Activity

The antioxidant activity of the essential oils was assessed using a variety of in vitro procedures, and the findings were reported as mean \pm SD of triplicate.

2.4.1. DPPH Radical Scavenging Assay

The test has been carried out using previously suggested techniques [27, 28]. Briefly, 5 mL of freshly made methanolic solution of DPPH (0.004%) was mixed with varying concentrations of VAO, VNO, and VTO (10 μ L/mL–50 μ L/mL). The mixture was then allowed to sit in the dark for 30 minutes. Finally, the absorbance was measured in triplicate at 517 nm using a UV spectrophotometer (Thermo Fisher Scientific, Evolution-201, Waltham, MA, USA) at 517 nm in comparison to a blank. In the same doses as the studied essential oils (10 μ L/mL-50 $\mu L/mL$). BHT the standard was antioxidant that utilised. The was following formula was used to determine the oils' and the standard's percentage inhibition of the DPPH free radical:

% DPPH radical scavenging activity
$$= \frac{(A_o - A_t)}{A_o} \times 100$$

where the absorbance values of the test and control essential oils are denoted by the letters Ao and At, respectively. Plotting percent inhibition versus concentrations allowed for the calculation of IC50 (halfmaximal inhibitory concentration) values using the equation for the line.

2.4.2. Hydrogen Peroxide (H2O2) Radical Scavenging Activity

The examined samples' H2O2 radical scavenging activity was carried out in accordance with the recommended procedure previously documented [29, 30]. Here, 0.4 mL of methanolic solution containing varying quantities of essential oils and the standard (10–50 μ L/mL) was mixed with 0.6 mL of H2O2 solution (40 mM) made in phosphate buffer (0.1 M; pH 7.4). For ten minutes, the aforementioned solution was incubated at room temperature. Additionally, the absorbance was measured at 230 nm in relation to the

blank, which is methanol. As a positive control, L-ascorbic acid (10–50 μ L/mL) was used. The following formula was used to determine the % scavenging of H2O2:

$$\%\,H_2O_2$$
 radical scavenging activity $~=~~\frac{(A_o-A_t)}{A_o}\times 100$

where the absorbance values of the test and control essential oils are denoted by the letters Ao and At, respectively. Plotting percent inhibition versus concentrations allowed for the calculation of IC50 values using the line equation.

2.4.3. Nitric Oxide Radical Scavenging Activity

The previously published approach was used to measure the tested essential oils' nitric oxide (NO) radical scavenging capability [31]. In short, various quantities of essential oils and the standard (10-50 μ L/mL) were individually mixed with 2 mL of sodium nitroprusside (10 mM) produced in phosphate buffer saline (0.5 mM, pH 7.4), and then incubated at 25 °C for 150 minutes. Additionally, 0.5 mL of each incubated solution was mixed with 0.5 mL of Griess reagent, which included 1.0 mL of sulphuric acid reagent. The absorbance was measured at 540 nm after the mixture was once again incubated for 30 minutes at room temperature. The conventional antioxidant was L-ascorbic acid. The following formula was used to determine the % scavenging of NO:

% NO radical scavenging activity
$$= \frac{(A_o - A_t)}{A_o} \times 100$$

where the absorbance values of the test and control essential oils are denoted by the letters Ao and At, respectively. Plotting percent inhibition versus concentrations allowed for the calculation of IC50 values using the line equation.

2.4.4. Reducing Power Assay

The previously described technique was used to determine the reducing power assay of several essential oils [32]. To 2.5 mL of phosphate buffer (200 mM, pH =6.6), various quantities of the investigated samples (essential oils and the standard $10-50 \mu L/mL$)) were added. Additionally, 2.5 mL of K3[FeCN6], a 1% potassium ferricvanide, was added to the solution above. After 20 minutes of incubation at 50 °C, 2.5 mL of trichloroacetic acid was added, and the mixture was centrifuged for 10 minutes at 650 rpm. The top layer received 1 mL of 0.1% ferric chloride and 5 mL of distilled water. The final solution's absorbance was measured at 700 nm, and a positive control of gallic acid (10-50 $\mu L/mL$) used. The following was calculation was used to determine the percentage lowering power:

% Reducing power activity
$$= \frac{(A_o - A_t)}{A_o} \times 100$$

where the absorbance values of the test and control essential oils are denoted by the letters Ao and At, respectively. Regression models for the percent inhibition plotted versus concentrations were used to get the RP50 values.

2.4.5. Fe2+ Metal Chelating Activity

Following the established and recommended technique, the Fe2+ metalchelation activity of VAO, VNO, and VTO was assessed [33]. Separately, 0.1 mL of FeCl2·4H2O (2 mM) and 0.2 mL of (5 Mm) ferrozine were combined with varying concentrations of oils (10-50 μ L/mL) and the standard. Additionally, 4.7 mL of methanol was added to the solution, increasing its total volume to 5 mL. A spectrophotometer (Thermo Fisher

Scientific, Evolution-201, USA) was used to measure the absorbance at 562 nm after the solution was agitated and incubated for 30 minutes at 25 °C. As a common antioxidant, Na2-EDTA (10–50 μ L/mL) was used. The following formula was used to determine the samples' capacity to chelate ferrous ions:

% Fe²⁺ metal-chelation activity =
$$\frac{(A_o - A_t)}{A_o} \times 100$$

where the absorbance values of the test and control essential oils are denoted by the letters Ao and At, respectively. Regression equations were used to get the IC50 values for the percent inhibition vs concentration plots.

2.5. Herbicidal (Phytotoxic) Activity

The essential oils of Vitex species were used to test the herbicidal efficacy against the receptor plant, Raphanus raphanistrum. Using the previously described approach, many factors were used, including suppression of root length growth, inhibition of shoot development, and inhibition of seed germination [34, 35]. Radish seeds were acquired for the experiment from the Vegetable Research Centre (VRC) at G.B.P.U.A. & T. Pantnagar, Uttarakhand, India.

2.5.1. Seed Germination Inhibition

Different essential oil concentrations (50-200 µL/mL) were made in a Tween-20 (1%) solution of distilled water in order to suppression of assess the seed germination. Radish seeds were surface sterilised for 15 minutes in a 5% hypochlorite solution to break dormancy. Each petri plate, coated with sheets of quality filter paper, contained ten sterile radish seeds. Additionally, 2 mL of the tested sample at different concentrations (50–200 μ L/mL) were put onto the plates,

and the seeds were left to germinate in an incubator with a photoperiod of 12 hours and a regulated temperature of $25 \pm 1 \circ C$. When a seed's root length reached 2 mm, it was said to have germinated. The bioassay was carried out in triplicate using pendimethalin (50–200 µL/mL) as a standard herbicide and distilled water as the control. The number of seeds that germinated in each petri dish was counted after 120 hours, and the percentage of seeds that were inhibited from germinating was then calculated using the method below:

Inhibition of seed germination (% Inhibition) = $100 \times (1 - Gt/Gc)$

where Gt = no. of seeds germinates in treatment, Gc = No. of seeds germinate in control.

2.5.2. Inhibition of Shoot and Root Elongation

Evaluations of shoot and root elongation were conducted over а 24-hour photoperiod at a regulated temperature of 25 °C. Two pre-germinated seeds were added to each Petri plate, which was then filled with 2.0 mL of the test solution. The germination bioassay and the EOs were examined at identical concentrations. The shoot and root lengths were measured after the 120-hour incubation period. The bioassays were conducted in triplicate, with pendimethalin (50–200 μ L/mL) employed as a standard herbicide and distilled water as the controls treatment. The following formulas were used to calculate the inhibition of root and shoot growth:

Inhibition of hypocotyl (shoot length) growth (% Inhibition) = $100 \times (1 - Ct/Cc)$ where, Ct = shoot length growth in treatment, Cc = shoot length growth in control. Inhibition of radicle (root length) growth (% Inhibition) = $100 \times (1 - Rt/Rc)$ where, Rt = root length growth in treatment, Rc = root length growth in control.

3. Results and Discussion

3.1. Chemical Composition

A total of 37, 45, and 43 components were identified in VAO (0.1-25.0%), VNO and VTO (0.1–16.2%), (0.1 - 19.4%),respectively. Twenty-two components were identified as common across all three essential oils, namely: α -thujene, α -pinene, sabinene, β-pinene, myrcene, 1,8-cineole, γ-terpinene, p-cymene, linalool, transsabinenehydrate, cis-p-menth-2-en-1-ol, terpinen-4-ol, α -terpineol, dihydroedulan II, β -caryophyllene, α-humulene, βiraldeine, β -caryophyllene oxide. αdrimenol. muurolol. and manool. Nevertheless, they differed in their percentages. respective Table 1 that the predominant summarises compounds in V. agnus-castus oil are 1,8-Cineole (25.0%), sabinene (13.3%), αpinene (8.2%), and α -terpinyl acetate (5.5%); in V. negundo oil, they are sabinene (19.4%), viridiflorol (17.8%), β caryophyllene (7.5%), and β -iraldiene (6.4%); while in V. trifolia oil, the abundant compounds include ßcaryophyllene (16.2%), 5-(1-isopropenyl-4,5-dimethylbicyclo[4.3.0]nonan-5-yl)-3methyl-2-pentenol acetate (11.7%), 13-epimanoyl oxide (5.6%), and caryophyllene oxide (4.6%). The chemical class composition of VAO mostly was comprised of oxygenated monoterpenes followed (40.6%), by monoterpene hydrocarbons (31.2%) and miscellaneous compounds. The only diterpenoid identified in VAO was manool (0.5%). Conversely, VNO was mostly composed of monoterpene hydrocarbons (29.4%), followed by oxygenated sesquiterpenes (24.8%) and oxygenated monoterpenoids (11.3%). The predominant class identified in VTO was sesquiterpene hydrocarbon (21.9%), followed by oxygenated sesquiterpene (15.8%) and oxygenated diterpenes (13.8%). For further information on chromatograms and mass spectra of chemical composition, please see Supplemental Material S1.

Table1.ComparativechemicalcompositionofessentialoilofVitexspecies.

. No.	Compound Name	Molecular Formula	R.I.	VAO	VNO	VTC
1	a-Thuiana (MH)	ConHere	930	1.4	0.2	0.1
2	α-Pinene (MH)	C10H16	939	8.2	2.6	1.6
3	Sabinene (MH)	C10H16	975	13.3	19.4	2.0
4	β-Pinene (MH)	C10H16	979	1.2	0.4	0.3
5	Oct-1-en-3-ol Myrrene (MH)	CieHie	979	3.1	0.5	4.0
7	α-Phellandrene (MH)	C10H16	1002	-	-	4.2
8	α-Terpinene (MH)	C10H16	1017	-	2.3	-
9	β-Phellandrene (MH)	C10H16	1029	-	1.0	-
10	1,8-Cineole (OM)	C10H18O	1031	25.0	1.2	2.1
11	β-Ocimene (MH)	C10H16	1044	1.5	-	-
12	Lipalool oxide (OM)	CioHisOn	1059	0.5	0.4	3.3
14	α-Terpinolene (MH)	C10H16	1088	-	1.2	-
15	p-Cymene (MH)	C10H12	1091	2.2	0.6	0.2
16	Linalool (OM)	C10H18O	1096	0.8	0.6	2.2
17	trans-Sabinenehydrate (OM)	C10H18O	1098	0.2	0.3	-
19	cis-n-menth-2-en-1-ol (OM)	C:-H:-O	1121	0.2	0.2	0.1
20	δ-Terpineol (OM)	C10H18O	1166	0.5	-	-
21	Terpinen-4-ol (OM)	C10H18O	1177	1.9	5.4	1.8
22	Cryptone (OM)	C ₉ H ₁₄ O	1185	0.1	-	-
23	α-Terpineol (OM)	C10H18O	1188	2.5	1.4	0.3
24	cis-Piperitol (OM)	CioHieO	1195	-	0.1	1.1
26	y-Terpineol (OM)	C10H18O	1199	0.1	-	1.1
27	trans-Piperitol (OM)	C10H18O	1208	-		0.8
28	β-Citronellol (OM)	C10H20O	1225	1.4		0.5
29	cis-Verbenyl acetate (OM)	C12H18O2	1282	1.1		
30	Dinydroedulan II Theaspirane A (OM)	C ₁₃ H ₂₂ O ₂	1284	0.1	0.1	0.5
32	α-Terpinyl acetate (OM)	C12H2002	1349	5.5	-	0.5
33	β-Citronellyl acetate (OM)	C12H22O2	1352	1.3	-	-
34	β-Damascenone (OM)	C13H18O	1384	-	0.1	-
35	β-Bourbonene (SH)	C15H24	1388	-		0.7
36 37	β-Elemene (SH) β-Carvonbyllone (SH)	CurH-	1390	37	75	16.2
38	Methyl-isoeugenol (Phenylpropanoid)	C15/24	1453	-		3.1
39	α-Humulene (SH)	C15H24	1454	0.2	0.4	1.4
40	β-Farnesene (SH)	C15H24	1456	4.5	0.6	-
41	β-Selinene (SH)	C15H24	1490	-	0.3	-
					% Compositi	10
š. No.	Compound Name	Molecular Formula	R.I.		% Compositio	on VTO
5. No.	Compound Name Bicyclogermacrene (SH)	Molecular Formula C15H24	R.I. 1500	• • • • • • • • • • • • • • • • • • •	% Compositio	on VTO
5. No.	Compound Name Bicyclogermacene (SH) a-Muuraicene (SH)	Molecular Formula C15H24 C15H24	R.I. 1500 1500	9 VAO 0.3	% Compositio VNO - -	on VTO 1.5
5. No. 43 44 45	Compound Name Bicyclogermacrene (SH) a-Muurolene (SH) y-Calinene (SH)	Molecular Formula C15H24 C15H24 C15H24	R.I. 1500 1513 1513	• • • • • • • • • • • • • • • • • • •	% Compositie VNO - - -	on VTO 1.5 0.8
5. No. 43 44 45 46	Compound Name Bicyclogermactene (SH) a-Mutorlene (SH) y-Cadinene (SH) 6-Cadinene (SH)	Molecular Formula C15H24 C15H24 C15H24 C15H24 C15H24	R.I. 1500 1500 1513 1523 1529	9 VAO 0.3 - -	% Composition	on VTO 1.5 0.8 0.5
5. No. 43 44 45 46 47 49	Compound Name Bicyclogermacrone (SH) s-Munrolene (SH) s-Cadinene (SH) &-Cadinene (SH) Heckycznyd (DS)	Molecular Formula C15H34 C15H34 C15H34 C15H34 C15H34 C15H34 C15H34 C15H34 C15H34	R.I. 1500 1500 1513 1523 1548 1548	9 VAO 0.3 - - - - 2 8	% Compositio VNO - - - 0.5	on VTO 1.5 0.8 0.5
5. No. 43 44 45 46 47 48 49	Compound Name Bicyclogermacence (SH) a-Munolene (SH) 4-Cadinne (SH) Hedycaryol (OS) 9-B-Hadder (Jonne)	Molecular Formula C15H24 C15H25 C15H26 C15H26 C15H26 C15H26 C15H27 C15H26 C15H27 C15H27 C15H28 C15H28 C15H28 C15H28 C15H28 C15H29 C15H29 <t< td=""><td>R.I. 1500 1510 1513 1523 1548 1557 1562</td><td>• VAO 0.3 - - - 3.8</td><td>⁶ Compositio VNO - - 0.5 6.4</td><td>on VTO </td></t<>	R.I. 1500 1510 1513 1523 1548 1557 1562	• VAO 0.3 - - - 3.8	⁶ Compositio VNO - - 0.5 6.4	on VTO
43 44 45 46 47 48 49 50	Compound Name Bicy-dogeneratores (611) + c-duturnisme (511) + c-duturnisme (511) + d-calinone (511) Hedycaryol (OS) - Haldeiro (iconone) Nershidd (OS) Nershidd (OS)	Molecular Formula C15H24 C15H24 C15H24 C15H24 C15H24 C15H24 C15H20 C14H20 C35H20 C34H20 C35H2	R.I. 1500 1513 1523 1548 1557 1563 1578	9 VAO - - - 3.8 - 1.4	⁶ Compositio VNO - - - - - - - - - - - - - - - - - - -	on VTO - 1.5 0.8 0.5 - 2.0 2.2 2.2
5. No. 43 44 45 46 47 48 49 50 51	Compound Name Bicyclogermacrene (SH) a-Munolene (SH) 4-Cadinene (SH) Hedycaryol (OS) 9-B-Haldeine (Jonne) Nerskildd (OS) 6-arrangbellene oxide (OS)	Molecular Formula C15H24 C15H24 C15H34 C15H340 C15H340 C15H340 C15H340 C15H340 C15H340	R.I. 1500 1513 1523 1548 1557 1563 1578 1583	VAO 0.3 - - - 3.8 - 1.4 1.9	<u>Compositiá</u> VNO - - 0.5 6.4 - - 1.3	on VTO 1.5 0.8 0.5 2.0 2.2 4.6
5. No. 43 44 45 46 47 48 49 50 51 52	Compound Name Bicyclogernacrene (SH) e-b-Carlinene (SH) - Carlinene (SH) - Hedycaryol (OS) - Haldeires (inone) - Nensidiol (OS) - Spathalenoi (OS) - Foru (Scholar (OS) - Foru (Scholar (OS)	Molecular Formula C15H34 C15H3	R.I. 1500 1500 1513 1548 1557 1563 1578 1578 1578 1583 1590	7 VAO 0.3 - - - - - - - - - - - - -	Compositia VNO - - - 0.5 6.4 - - 1.3 0.2	on - - - - - - - - - - - - -
43 44 45 46 47 48 49 50 51 52 53	Compound Name Bicyclogermacrence (SH) a-Munotene (SH) 5-4Cadinnee (SH) Hedycaryol (OS) 6-Iraldeire (izonne) Neerkidol (OS) 9-Gradueiro (ICOS) p-Carabianol (OS) Cichebial (OS) Viridifford (OS)	Molecular Formula C13H34 C15H3	R.I. 1500 1513 1523 1548 1557 1563 1578 1583 1590 1592	VAO 03 - - - - - - - - - - - - - - - - - -	⁶ Compositi VNO - - - - - - - - - - - - - - - - - - -	on VTO - 1.5 0.8 0.5 - 2.0 2.0 2.2 - 4.6 1.4 -
5. No. 43 44 45 46 47 48 49 50 51 52 53 54	Compound Name Bicyclogermacrene (SH) e-Munrolmer (SH) Hedycaryol (OS) J-Indácine (inonne) Nenidáci (OS) 5-pathukenol (OS) J-caryotphilene cosi (OS) Viridifored (OS) Ledde (OS)	Molecular Formula C15H34 C15H34 C15H34 C15H34 C15H34 C13H320	R.I. 1500 1513 1513 1548 1557 1563 1578 1583 1578 1583 1590 1590 1592 1602	7 VAO 0.3 - - - - - - - - - - - - -	⁶ Composition VNO - - - 0.5 6.4 - - - 1.3 0.2 17.8 1.0	on VTO - 1.5 0.8 0.5 - 2.0 2.2 - 4.6 1.4 - - - -
5. No. 43 44 45 46 47 48 49 50 51 52 53 55 55	Compound Name Bicyclogermacrone (SH) a-Munotene (SH) - 4-Cadinene (SH) - 4-Cadinene (SH) - Hendyteine (Icon) - 9-Indictine (Icone) Netwikidol (CS) - 9-Indictine (Icon) - 1-Cadeula (ICO) - Viciditatori (ICO) - Viciditatori (ICO) - Ledol (ICS) - Humulene epoxide II (ICS)	Molecular Formula C1:5H3 C1:5H	R.I. 1500 1500 1513 1523 1548 1557 1563 1578 1578 1578 1578 1578 1578 1579 1579 2 1592 1592 1608	5 VAO 0.3 - - - - - - - - - - - - -	⁶ Compositi VNO - - - - - - - - - - - - - - - - - - -	on - 1.5 0.8 0.5 - 2.0 2.2 - 4.6 1.4 - 1.2
43 44 45 46 47 48 49 50 51 52 53 54 55 56	Compound Name Bicyclogermacrene (SH) e-Muurolene (SH) Calinene (SH) H-edycaryol (OS) β-Inaldeire (inonne) Nerdidol (OS) G-garyophyllene oxide (OS) G-garyophyllene oxide (OS) (Fa-garyophyllene oxide (OS) Humulene geoxide (I (OS) Humulene J-ddim-3-0 (OS)	Molecular Formula C15H24 C15H24 C15H24 C15H24 C15H24 C15H20	R.I. 1500 1513 1513 1548 1557 1563 1578 1583 1580 1590 1592 1602 1602 1602 1603	vAO 0.3 - - - - 3.8 - - - - - - - - - - - - - - - - - - -	Compositié VNO - - - - 0.5 6.4 - - 1.3 0.2 17.8 1.0 - 2.3	on VTO 1.5 0.8 0.5 2.0 2.2 4.6 1.4 - 1.2 -
5. No. 43 44 45 46 47 48 49 50 51 52 53 55 55 55 55 55 57	Compound Name Bicyclogermacrow (SH) ~Calinene (SH) ~Calinene (SH) ~Calinene (SH) ~Calinene (SH) ~Calinene (SH) ~Calinene (SH) ~Calinete (IOS) ~Calinete (IOS) ~Calinete (IOS) ~Calinete (IOS) Humulane-provide II (OS) Humulane-Jo-dim-3-01 (OS)	Molecular Formula C13H3, C1	R.I. 1500 1500 1513 1523 1548 1557 1563 1578 1578 1578 1578 1592 1602 1592 1608 1592 1608 1619 1649	7 VAO 0.3 - - - - - - - - - - - - -	Compositié VNO - - 0.5 6.4 - - 1.3 0.2 17.8 1.0 - - - - - - - - - - - - - - - - - - -	on - - - - - - - - - - - - -
5. No. 43 44 45 46 47 48 9 50 51 52 53 54 55 55 55 55 55 58	Compound Name Bicyclogermacrene (SH) a-Muurolene (SH) Y-Calinnee (SH) Y-Calinnee (SH) Heydramyd (CS) β-trayloffuen oxide (CS) Gabetuloi (OS) Gabetuloi (OS) Y-indidree (CS) Y-indidree (CS) Y-indidree (CS) Humulene -J-dien-3-01 (CS) a-Muurole (CS) a-Muurolei (CS)	Molecular Formula CisH24 CisH24 CisH24 CisH30 CisH300	R.I. 1500 1513 1513 1523 1548 1557 1553 1578 1583 1590 1592 1602 1602 1609 1619 1646	5 VAO 0.3 - - - - - - - - - - - - -	Compositi VNO - - - - - - - - - - - - - - - - - - -	on VTO 1.5 0.8 0.5 - 2.0 2.2 - 4.6 1.4 - 1.2 - 1.7
5. No. 43 44 45 46 47 48 49 50 51 55 55 55 55 55 55 56 57 58 59 90	Compound Name Bicyclogernatorus (SH) ~Calinone (SH) *Calinone (SH) *Calinone (SH) Hedycaryol (OS) β-trabletire (isonen) Systikukoni (OS) %-caryophyllene oxide (OS) Globulat (OS) Viridiflord (OS) Humulane: J-dun-3 of (OS) munulane: J-dun-3 of (OS) a-Muurolol (OS) §-cachinel (OS) a-Muurolol (OS) §-cachinel (OS) a-Muurolol (OS) §-cachinel (OS) B-cachinel (OS) B	Molecular Formula CyH34, CyH34, <t< td=""><td>R.I. 1500 1500 1513 1513 1545 1557 1563 1578 1578 1578 1578 1578 1579 1592 1602 1608 1619 1640 1640 1640 1640</td><td>VAO 0.3 - - - 3.8 - - - - - 0.4 - - - 0.4 - - 2.4 2.1 0.1</td><td>Compositi VNO - - - - - - - - - - - - - - - - - - -</td><td>on - 1.5 0.8 0.5 - 2.0 2.2 - 4.6 1.4 - 1.2 - 1.7 - 1.2 - 1.2 - - 1.2 - - - - - - - - - - - - -</td></t<>	R.I. 1500 1500 1513 1513 1545 1557 1563 1578 1578 1578 1578 1578 1579 1592 1602 1608 1619 1640 1640 1640 1640	VAO 0.3 - - - 3.8 - - - - - 0.4 - - - 0.4 - - 2.4 2.1 0.1	Compositi VNO - - - - - - - - - - - - - - - - - - -	on - 1.5 0.8 0.5 - 2.0 2.2 - 4.6 1.4 - 1.2 - 1.7 - 1.2 - 1.2 - - 1.2 - - - - - - - - - - - - -
5. No. 43 44 45 46 47 48 49 50 55 55 55 55 55 55 56 60 61	Compound Name Bicyclogermacrene (SH) a-Mumaclene (SH) y-Calinene (SI) b-Calinene (SI) b-Inalderine (income) Nerolidol (OS) G-aryophyllene oxide (OS) G-aryophyllene oxide (OS) y-indifered (OS) y-indifered (OS) Humulane persola II (OS) Humulane - J-dim-0-40 (OS) a-Mumolol (OS) β-eudesmol (OS) β-eudesmol (OS) β-eudesmol (OS)	Molecular Formula CipHig. <	R.I. 1500 1513 1523 1544 1557 1563 1578 1583 1588 1589 1590 1592 1592 1602 1603 1606 1650 1666 1653 1767	7 VAO 0.3 - - - - - - - - - - - - -	Compositiá VNO - - 0.5 6.4 - - 1.3 0.2 17.8 1.0 - 2.3 - - 2.3 - - 0.2 1.1 - - 0.4	on VTO - 1.5 0.8 0.5 - 2.0 2.2 - 4.66 1.4 - 1.2 - 1.7 - 1.6 0.6
43 44 44 45 55 55 55 55 55 55 55 55 55 55	Compound Name Biccy-dogenotations (GH) by Columnitions (GH) by Columne (GH) c-Calinene (GH) c-Calinene (GH) c-Calinene (GH) c-Calinel (GS) c-	Molecular Formula CyH33, CyH34, CyH34, <t< td=""><td>R.I. 1500 1513 1528 1548 1557 1563 1578 1590 1590 1600 1640 1640 1640 1640 1653 1553</td><td>VAO 0.3 - - - 3.8 - - - - - - - - - - - - - - - - - - -</td><td>Compositie VNO - - - - - - - - - - - - - - - - - - -</td><td>on VTO - - - - - - - - - - - - -</td></t<>	R.I. 1500 1513 1528 1548 1557 1563 1578 1590 1590 1600 1640 1640 1640 1640 1653 1553	VAO 0.3 - - - 3.8 - - - - - - - - - - - - - - - - - - -	Compositie VNO - - - - - - - - - - - - - - - - - - -	on VTO - - - - - - - - - - - - -
5. No. 43 44 45 50 51 55 55 55 55 55 56 57 58 59 60 61 62 63	Compound Name Bicyclogermacene (SH) a-Munotene (SH) y-Calinne (SH) y-Calinne (Sh) b-Indicine (Isrome) Menidication (Isrome) Nenidication (Isrome) Spathulenol (OS) Galebulol (OS) Humulaes I-Jedan-3-0 (OS) Humulaes I-Jedan-3-0 (OS) a-Munolol (OS) f-europhysical (OS) p-indexend (OS)	Nolecular CoH4a Co	R.I. 1500 1510 1513 1523 1557 1553 1578 1578 1578 1578 1579 1602 1608 1619 1640 1646 1653 1767 1870	2 vao 0.3 - - - - - - - - - - - - -	Composition VNO - - - - - - - - - - - - - - - - - - -	200 - - - - - - - - - - - - -
43 44 45 46 47 48 49 50 51 52 53 55 55 55 55 55 55 56 61 62 63 64	Compound Name Bicyclogermacrene (SH) e.b./Cadinone (SH) A-Cadinone (SH) A-CAd	Мојесијат Formula СајНа, СајН	R.I. 1500 1513 1524 1548 1557 1563 15783 1590 1590 1590 1608 1619 1640 1640 1640 1640 1653 17670 1870 1870	vao 0.3 - - 3.8 - 1.4 1.9 - 2.4 2.1 0.1 - -	⁶ Composition VNO - - - - - - - - - - - - - - - - - - -	on - - - - - - - - - - - - -
5. No. 43 44 45 50 51 52 55 55 55 59 60 61 62 63 64 65	Compound Name Bicyclogermacenee (SH) a-Mutorlene (SH) y-Catilinene (SH) y-Catilinene (SH) Hadyenry el (Ob) Nerdikidol (OS) Spathulenol (OS) Gabulal (OS) Gabulal (OS) Uridikord (OS) Humulane J-dam 3-d (OS) Humulane J-dam 3-d (OS) a-mytophytoleno (OS) p-acaytophytol (OS) B-acadesidol (OS) Dimentol (OS) Pogostol (OS) Dimentol (OS) Pogostol (OS) Dimentol (OS) Pogostol (OS) Dimentol (OS) Pogostol (OS) Dimentol (OS) Biconstaneo (DD) Poptol (OD) 13-peirumanol rotake (DD)	Molecular Formula Cg4Hg, <	R.I. 1500 1510 1513 1523 1548 1578 1583 1578 1583 1592 1602 1609 1619 1646 1646 1646 1646 1653 1767 1878 1877 1878 1878 1878 1870 1878 1870 1970	2 vao 3.8 - - - - - - - - - - - - -	K Composition VNO - - - - - - - - - - - - - - - - - - -	on VTO 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.4 1.2 1.2 1.7 1.7 1.7 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
43 44 44 45 46 47 48 950 55 55 55 55 55 55 55 55 55 55 55 55 5	Compound Name Bicyclogermacrene (SH) e.b.Muntolene (SH) A.C.adinene (SH) A.C.adinene (SH) H.edycaryol (OS) β-traildeires (incone) Nersidiod (OS) β-caracteristic (SG) β-caracteristic (SG) β-caracteristic (SG) Humulane, β-dan,3-ol (SG) Humulane, β-dan,3-ol (SG) Humulane, β-dan,3-ol (SG) β-autoristic	Моlecular Formula СаНа, САНА,	R.I. 1500 1500 1513 1523 1545 1558 1558 1558 1590 1590 1590 1590 1602 1602 1602 1603 1519 1640 1650 1653 1577 1577 1577 1570	5 5 5 5 5 5 5 5 5 5 5 5 5 5	6 Compositié VNO - - - - - - - - - - - - - - - - - - -	on VTO - - - - - - - - - - - - -
b. No. 43 44 45 50 55 55 55 55 55 55 55 55 55 55 55 55	Compound Name Bicyclogermacenee (SH) a-Mutorlene (SH) y-Cadinene (SH) y-Cadinene (SH) Hedycaryol (Osnor) Nershield (OS) Spathulenol (OS) Galobula (OS) Galobula (OS) Uridiatoral (OS) Uridiatoral (OS) Humulane J-dami-d-d (OS) Humulane J-dami-d-d (OS) a-Mutolal (OS) Bicarosphilen oxide (OS) Galobula (OS) Pogosta (OS) Progensal (OS)	Molecular Formula Cg4Hg, <	R.I. 1500 1510 1513 1523 1548 1557 1563 1578 1583 1590 1602 1603 1604 1616 1653 1767 1878 1943 2045 2066	7 VAO 0.3 - - - - - - - - - - - - -	⁶ Compositi VNO - - - 0.5 6.4 - - - - 2.3 0.2 1.0 - - 2.3 - 0.2 1.1 1.0 - - 0.2 1.3 1.2 - - 0.4 - - - 0.4 - - - 0.4 - - - - 0.5 0.4 - - - - - - - - - - - - - - - - - - -	m VTO 1.5 0.8 0.5 - 2.0 2.2 - 4.6 6.0 8. - 1.7 - 1.7 - 1.5 - - 0.5 - - - - - - - - - - - - -
5. No. 43 444 45 55 55 55 55 55 55 55 55 55 55 60 61 62 63 64 66 66 66 66 68	Compound Name Bicyclogermacrene (SH) e-Munrolmer (SH) r-Munrolmer (SH) r-Munrolmer (SH) r-Multi-Standing (SG) p-Inaldeires (innone) Nendidol (CS) p-Garyphylaen (CS) r-Garyphylaen (CS)	Мојесијаг Formula Санђа, Санс	R.I. 1500 1500 1513 1523 1545 1556 1578 1585 1590 1592 1602 1608 1619 1640 1640 1650 1635 1635 1635 1635 1635 1645 16555 1655 1655 1655 1655 1655 1655 1655 1655 1655 1655	5 5 5 5 5 5 5 5 5 5 5 5 5 5	Compositi VNO - - - - - - - - - - - - - - - - - - -	on VTO 5 0.8 0.5 0 2.2 4 6.6 1.4 1.2 1.6 0.8 0.5 0 2.2 1
5. No. 43 43 44 45 55 55 55 55 55 55 55 55 55 55 55	Compound Name Bicyclogermacrow (SH) a-Maurolem (SH) A-Cadinene (SH) A-Cadinene (SH) A-Cadinene (SH) A-Cadinene (SH) A-Cadinene (SH) A-Cadinet (score) B-Cadulation (SO) B-Cadu	Molecular Formula CipHig. CipHig. C	R.I. 1500 1500 1513 1513 1548 1557 1557 1557 1557 1557 1578 1599 1619 1640 1653 1578 1578 1578 1578 1578 1578 1578 1640	7 VAO 0.3 - - - - - - - - - - - - -	6 Compositi VNO - - - 0.5 - - - - - - - - - - - - - - - - - - -	m VTO 5 5 5 5 5 5 5 5 5 5 5 5 5
. No. 43 44 44 45 55 55 55 55 55 55 55 55 55 55	Compound Name Bicyclogermainere (GH) to 'Cadimene (GH) + 'Cadimene (SH) + 'Cadimene (SH) + 'Cadimene (SH) + 'Cadimene (SH) + Hodycaryol (OS) - Bi-anabiere (nonne) - Somethic (OS) - Somethic (OS) - Cadimene (SG) - Fogostal (CS) - Fogostal (CS) - Dimenel (CS) - Dimenel (CS) - Dimenel (CS) - Sclamedide (DD) -	Molecular Formula CirHig, C	R.I. 1500 1513 1544 1557 1557 1553 1558 1558 1559 1592 1602 1602 1603 1649 1649 1640 1640 1640 1650 1657 1577 1577 1577 1577 1577 1577 1577	vao 03 - - - - - - - - - - - - - - - - - -	Compositi VNO - - - - - - - - - - - - - - - - - - -	on VTO - 1.5 0.8 0.5 - 2.0 0.2 2.2 - 2.0 0.2 2.2 - - - 2.0 0.2 2.2 - - - - - - - - - - - - -
5. No. 43 44 45 50 51 52 53 55 55 56 66 66 66 66 66 66 66 66 66 66	Compound Name Bicyclogermacrene (SH) e-Muurolene (SH) y-Calinner (SH) Helycaryol (CS) β-ralydeire (inone) Nerdidol (CS) Gabalai (CS) Gabalai (CS) Gabalai (CS) Humulane dol (CS) Humulane Jodien-Jodie Humulane Jodien-Jodie Humulane Jodien-Jodie Humulane (SS) Humulane (SS) Humulane (SS) Phone (SS) Phone (SS) Phone (SS) Phone (SS) Phone (SS) Stareolde (CD) Stareolde (J) Stareolde (J) Sta	Molecular Formula CsH4, p. 1 CsH4, p. 1 CsH4, p. 1 CsH4, p. 1 CsH4, p. 2	R.I. 1500 1513 1523 1548 1557 1563 1570 1590 1600 1609 1646 1646 1646 1646 1653 1767 1870 1870 1870 2020 2020 2020 2026 2026	2 VAO 0.3	Compositié VNO - - - - - - - - - - - - - - - - - - -	on VTO - 1.5 0.8 0.5 - 2.0 0.2 2.2 - 6 4.14 1.4 - 2 - 1.7 - 1.6 0.8 0.5 - 2.0 0.2 2.2 - 6 4.14 1.4 - 1.4 - 1.5
5. No. 43 44 45 50 55 55 55 55 55 55 55 55 55 55 60 61 62 63 66 66 66 67 70 70	Compound Name Bicyclogenturions (SH) by Caliment (SH) by	Molecular Formula CuHs C	R.I. 1500 1503 1544 1544 1547 1547 1553 1553 1550 1590 1692 1619 1646 1646 1646 1646 1646 1650 1697 1677 1878 1978	24 0.3 3.8 - - - - - - - - - - - - - - - - - - -	4 Compositivity • • • • • • • • • • • • • • • • • • •	on VT00 1. 1. 1. 2. 0. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2
5. No. 43 444 445 447 449 55 55 55 55 55 55 55 55 55 55 55 55 55	Compound Name Bicyclogermacrene (SH) e-Muurolene (SH)Carlinner, SH)Carlinner, SH)Carlinner, SH)	Molecular Formula CaH4a, CAH4A, CAH4A, CAH4A, CAH4A, CAH4A, CAH4A, CAH4A, CAH4A, CAH4A, CAH4A, CAH4A, CAH4A, CAH4A, CAH4A, CAH4A, CAH4A, CAH4A, CAH4A, C	R.I. 1500 1510 1513 1523 1548 1557 1587 1583 1583 1592 1602 1602 1602 1602 1602 1603 1619 1619 1619 1619 1646 1653 1767 1870 1870 1870 2065 2265 2266 2273	7 7 7 7 7 7 7 7 7 7 7 7 7 7	6 Compositi VNO - - - - - - - - - - - - -	an VTO - - - - - - - - - - - - -
5. No. 43 44 45 46 51 52 53 54 55 56 60 70 72	Compound Name Bicyclogernatoreu (SH) A-Menardeur (SH) A-Calinnee (SH) A-Calinn	Molecular Formula CuHsy	R.I. 1500 1510 1513 1524 1554 1558 1558 1558 1558 1558 1558 155	24 0.3 3.8 - - - 2.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.5 - - - - - - - - - - - - - - - - - - -	Compositi VN0 - - - - - - - - - - - - - - - - - - -	on VTO - - - - - - - - - - - - -
5. No. 43 44 45 55 55 55 55 55 55 55 55 55 55 55	Compound Name Bicyclogermacrene (SH) e-Muurolene (SH)Muurolene (SH)	Molecular Formula CipHig. CipHig. CipHig. CipHig. CipHig.O Ci	R.I. 1500 1510 1513 1523 1548 1557 1587 1583 1590 1592 1602 1602 1602 1604 1619 1646 1650 1657 1677 2007 2007 2007 2006 2265 2266 2273 -	7 7 7 7 7 7 7 7 7 7 7 7 7 7	6 Compositi VNO - - - - - - - - - - - - -	an VTO
5. No. 43 44 45 55 55 55 55 55 55 55 56 61 62 63 64 66 66 67 77 1 72	Compound Name Bicy-determinences (GH) is-y-determinences (GH) is-y-determinenc	Molecular Formula CuHs C	R.I. 1500 1510 1513 1524 1544 1544 1544 1545 1578 1580 1590 1590 1590 1592 1592 1592 1592 1592 1592 1592 1592 1593 1590 2007 200	24 0.3 - - - - - - - - - - - - - - - - - - -	Compositi VNO - - - - - - - - - - - - - - - - - - -	m VTO - - - - - - - - - - - - -
5. No. 43 44 44 44 46 47 48 49 55 55 55 55 55 56 60 61 62 63 66 66 66 66 69 70 77 72	Compound Name Bicyclogermacnene (SH) e-Munrolene (SH)Calinner (SH)Calinner (SH)Calinner (SH)Calinner (SH)Holzen (SG)Garophyllene oxide (CS)Garophyllene oxide (CS)	Molecular Formula 0:94%	R.I. 1500 1510 1511 1513 1535 1558 1557 1563 1578 1590 1590 1610 1600 1610 1600 1650 1653 1663 1653 1665 1653 1653 1653 1653	2 VAO 0.3 - - - - - - - - - - - - -	4 Compositi VNO - - - - - - - - - - - - -	on VTO 5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
5. No. 43 44 45 55 55 55 55 55 55 55 55 55 55 55	Compound Name Bicyclogennatown (GH) bicyclogennatown (GH) bicyclogennatown (GH) y-chaldeiren (SH) y-ch	Molecular Formula CuHa CuHa CuHa CuHa CuHa CuHa CuHa CuHa	R.I. 1500 1503 1544 1544 1547 1557 1557 1553 1559 1590 1590 1619 1646 1646 1646 1646 1646 1650 1657 1877 1877 1878 1978 2005 2223 2265 2266 2273	24 03 - - - - - - - - - - - - - - - - - -	Compositi VNO - - - - - - - - - - - - - - - - - - -	m VTO - - - - - - - - - - - - -
5. No. 43 44 44 44 44 44 44 44 44 44 44 40 51 52 55 55 55 56 60 61 62 63 66 66 66 67 70 77 72	Compound Name Bicyclogermacrene (SH) e-Mumolene (SH) y-Calinner (SH) y-Calinner (SH) H-Hoyaryol (CS) β-Iraldeire (inone) Newtidiol (CS) G-aryophyllene oxide (CS) Humulane-fodien-3-ol (CS) Humulane-fodien-3-ol (CS) p-academai (CS) β-academai (Molecular Formula CigHtg, CigHtg, CigHtg, CigHtg, CigHtg, CigHtg,OC CigHtg,CigHtg,OC CigHtg,OC	R.I. 1500 1510 1511 1513 1558 1557 1563 1578 1580 1578 1580 1578 1580 1590 1590 1590 1602 1608 1619 1640 1653 1767 1678 1640 1653 1653 1653 1653 1653 1653 1653 1653	2 3 3 3 3 3 3 3 3 3 3 3 3 3	4 Compositi VNO - - - - - - - - - - - - - - - - - - -	an VTO
5. No. 43 44 44 45 55 55 55 55 55 55 55 55 55 55	Compound Name Bicyclogermacrene (SH) icCadinone (SH) -Cadinone (SH) -Cadinone (SH) -Cadinone (SH) -Cadinone (SH) -Hodycaryol (OS) -B-Hadderice (innore) -Sepathalenal (OS) -Gould (OS) -Gould (OS) -Cadinol (OS) -Cadinol (OS) -Cadinol (OS) -Gould	Molecular Formula CipHig.	R.I. 1500 1513 1524 1547 1557 1553 1558 1558 1559 1590 1590 1590 1600 1640 1640 1640 1640 1650 1657 1577 1577 1577 1577 1577 1577 1577	vao 03 - - - - - - - - - - - - - - - - - -	Compositi VNO - - - - - - - - - - - - - - - - - - -	on VTO

current investigation. The oxygenated sesquiterpenes found in VAO, including spathulenol, ledol, and epi- α -cadinol, have been previously reported in the essential oil of V. agnus castus leaves from Ogliastra, Sardinia, Italy [46]. However, other sesquiterpenoids such as β -eudesmol, drimenol, and flourensadiol were not previously detected in the essential oil of V. agnus castus leaves. VAO is also devoid of chemicals such as limonene,

viridiflorol, and globulol, which are often found in the majority of prior studies [45– 48]. The research illustrates many chemovariants of V. agnus castus in both qualitative and quantitative terms.

Prior studies have also examined the essential oils of Vitex negundo, which are the subject of this work. For example, the predominant components identified in sabinene (19.4%), viridiflorol VNO, (17.8%), and β -caryophyllene (7.5%), were likewise recognised in varying concentrations in the hvdrodistilled essential oil of Vitex negundo leaves 5-(1-Isopropenyl-4,5-[22,49,50]. dimethylbicyclo[4.3.0]nonan-5-yl)-3methyl-2-pentenol acetate (5.2%), а significant component identified in VNO, was also isolated in substantial quantities in the essential oil of V. negundo leaves [51]. The chemical composition of the essential oil of Vitex negundo, extracted in the spring from Pantnagar, exhibited over 33 compounds, with the predominant constituents being viridiflorol (23.8%), sabinene (11.2%), an unidentified diterpene M+ = 272 (11.0%), and caryophyllene (6.7%)[50]. The composition previously lacked the compounds α-thujene, β-pinene, αterpinene, β-phellandrene, γ-terpinene, linalool oxide, p-cymene, transsabinenehydrate, theaspirane A, ßiraldeine, β -caryophyllene oxide, ledol, humulane-1,6-dien-3-ol, and the diterpenes cubetene, phytol, manool, and sclereol; however, in the current study, these compounds are identified in significant quantities. Consequently, the composition may fluctuate according on the harvesting season. In a separate research from India, α -copaene (25.3%), β -elemene (19.2%), and camphene (21.1%) were identified as the primary components in the leaf essential oil of V. negundo [52]. Khokra et

al. [53] identified ethyl-9-hexadecenoate (28.5%), δ-guaiene (18.0%), and caryophyllene oxide (10.2%) as the predominant constituents in the leaf essential oil of V. negundo. Conversely, the leaf essential oil of V. negundo from China exhibited δ -guaiene (50.0%) and βcaryophyllene (38.0%) as its principal components [54]. The qualitative and quantitative differences in the essential oils of V. negundo from various geographic locations may result from differing geographical and climatic circumstances.

Thomas et al. [55] examined the essential trifolia and oil of V. identified caryophyllene (38.36%) and 1.8-cineole (25.72%) as the principal components. In the current research, the concentration of 1,8-cineole in VTO is just 2.1%. βcaryophyllene is recognised as the principal component of V. trifolia oil in several papers [56–58], corroborating the findings of the current investigation. discovered five Arpiwi et al. [59] components in V. trifolia essential oil, with cis-ocimene α-thujene (44.57%), (25.63%),cyclopentene, and 3isopropenyl-5,5-dimethyl (18.19%)recognised as the predominant ingredients. In the current investigation, such compounds were not identified, and the quantity of α -thujene discovered was minimal (0.2%). The second predominant component identified in VTO, 5-(1isopropenyl-4,5-

dimethylbicyclo[4.3.0]nonan-5-yl)-3-

methyl-2-pentenolacetate (11.7%), has also been seen in other Vitex species, including V. agnus-castus and V. negundo [51,60]. The prominent diterpenes found in VTO, 13-epi-manoyl oxide (5.6%) and 16-oxocleroda-3,13(14)-(e)-dien-15-oic acid (2.8%), are being reported for the first time in V. trifolia oil. The variations in essential oil composition may result from internal and external variables and their interplay.

The chemicals found in the analysed essential oils has significant biological uses. 1.8-cineole is used in cosmetic formulations and as a flavouring ingredient due to its agreeable fragrance and flavour. The chemical has additional properties: insecticidal, antioxidant, and antiinflammatory [61]. Viridiflorol is mostly used as an anti-inflammatory, antioxidant, and anti-tuberculosis agent [62]. Literature describes sabinene possessing as antibacterial. anti-inflammatory, and antioxidant effects [63]. Additionally, the 13-epi-manoyl diterpene. oxide, has cytotoxic antibacterial and antifungal properties [64].

3.2. Chemometric Analysis

chemical The primary constituents prevalent in all tested species' essential oils (α -thujene, α -pinene, sabinene, β -pinene, myrcene, 1,8-cineole, γ-terpinene, pcymene, linalool, cis-p-menth-2-en-1-ol, terpinen-4-ol, α -terpineol, dihydroedulan β-caryophyllene, α-humulene, β-II. β-caryophyllene iraldeine, oxide, αmuurolol, drimenol, and manool) were analysed using hierarchical cluster analysis with Euclidean distance as the metric for similarity. Figure 1 illustrates the heat map clustering diagram. 1,8-Cineole, sabinene, and β-caryophyllene constitute distinct clusters with varying values relative to the other examined common elements. The heat map clustering, using Euclidean distance, clearly categorises all examined species into two primary groupings based on shared chemical elements. VNO and VTO are grouped into a single cluster, but VAO is in a distinct cluster.

Figure 1. The heatmap analysis of the shared essential oil constituents and evaluated species (The distribution of the characteristic (common essential oil components) is shown by colours, with yellow denoting the largest value and blue signifying the least value).

3.3 Principal component analysis

Principal component analysis (PCA) is a prominent multivariate statistical approach used to discern the most significant aspects of a dataset. Distinct essential oils may be used in PCA pattern recognition to evaluate the alterations in chemical profile induced by interspecies and altitudinal factors. The PCA method established that the cumulative variance contribution of the first two principal components (PC1 and PC2) accounted for 81.2% of the variation in chemical composition changes. PC1 and PC2 were used to delineate the compositional variances in the essential oils. PC1 had a positive correlation with terpinen-4-ol, β -iraldeine, β -caryophyllene, viridiflorol, and sabinene, accounting for 48.7% of the total variance. PC2 accounts for 32.5% of the variance and has a robust positive connection with α -pinene and 1,8cineole (Figure 2).

Figure 2. Principal Component Analysis of tested essential oil's chemical constituents.

3.4. Antioxidant Activity

The antioxidant activity was assessed utilising several chemical techniques. Figures 3A-E illustrate the antioxidant efficacy of the evaluated essential oil shown as percent inhibition. The results indicated that all antioxidant activity were concentration-dependent. The percentage inhibition of free radicals (DPPH, H2O2, reducing capacity, NO), and metal chelation enhanced with the concentration rise from 10 μ L/mL to 50 μ L/mL. The percentage of inhibition by the evaluated essential oils and standards for various antioxidant tests was graphed against concentrations, and the line equation was used to get the IC50 (half-maximal inhibitory concentration) values.

Figures 4A-E illustrate the antioxidant activity of the evaluated essential oils based on their IC50 values. The DPPH test uses the conversion of the stable violet radical DPPH to the yellow DPPH-H to assess the capacity of an antioxidant molecule to function as a donor of hydrogen atoms or electrons. Figure 4A indicates that VNO reduced DPPH with an IC50 value of $23.16 \pm 0.5 \ \mu L/mL$, which is comparable to the standard antioxidant used in the experiment, BHT (18.84 \pm 0.6 VAO and VTO $\mu L/mL$). exhibited moderate and weak antioxidant activity, with IC50 values of $25.39 \pm 0.0 \text{ }\mu\text{L/mL}$ and $32.49 \pm 0.5 \ \mu L/mL$, respectively. Hydrogen peroxide (H2O2) may permeate biological membranes, thereby inflicting harm on the human body by generating reactive hydroxyl radicals (OH·) via the Fenton reaction [65]. In the H2O2 radical scavenging experiment, VAO (IC50 = $24.49 \pm 0.1 \ \mu L/mL$) exhibited superior scavenging activity relative to the standard, ascorbic acid (28.33 \pm 0.5 μ L/mL), followed by VNO (32.38 ± 0.5

 μ L/mL) and VTO (34.30 ± 0.5 μ L/mL). The nitrite scavenging capacity of the samples was evaluated against ascorbic acid, yielding the following IC50 values: ascorbic acid (24.49 \pm 0.1 μ L/mL) > VNO $(27.58 \pm 0.1 \ \mu L/mL) > VTO \ (32.27 \pm 0.1)$ $\mu L/mL$) > VAO (32.95 ± 0.5 $\mu L/mL$). The reducing power of a chemical correlates with its capacity to transport electrons, indicating its considerable antioxidant potential. Figure 4D illustrates that VNO exhibited а commendable reducing capacity (RP50 = $19.05 \pm 0.6 \ \mu L/mL$), which is comparable to and somewhat lower than that of the standard gallic acid $(20.22 \pm 0.4 \ \mu L/mL)$. The sequence of RP50 values for various samples is as follows: VNO (19.05 \pm 0.6 μ L/mL) > gallic acid (20.22 \pm 0.4 μ L/mL) > VAO $(20.97 \pm 0.5 \ \mu L/mL) > VTO \ (22.74 \pm 0.7)$ μ L/mL). In auto-oxidation processes, metal ions serve as potent catalysts by inhibiting the formation of oxygen radicals. The IC50 values for various samples and standards for their antioxidant capacity in terms of chelating ability were recorded as follows: Na2-EDTA (IC50 = $26.23 \pm 0.26 \ \mu L/mL) > VTO (IC50 =$ $29.77 \pm 0.2 \ \mu L/mL$) > VNO (IC50 = 31.18 $\pm 0.2 \ \mu L/mL$) > VAO (IC50 = 36.60 ± 0.1 $\mu L/mL$).

Figure 3. (A–E) Antioxidant efficacy of essential oils from Vitex species: (A) Percentage of DPPH radical scavenging activity; (B) Percentage of H2O2 scavenging activity; (C) Percentage of NO radical scavenging activity; (D) Percentage of reducing power activity; (E) Percentage of Fe2+ metal chelating activity.

The pronounced antioxidant activity of VNO against DPPH and NO radicals is likely attributable to its substantial sabinene content, along with additional compounds such as β-caryophyllene, terpinen-4-ol, and 1,8-cineole, which exhibit antioxidant potential via various mechanisms [66–68]. Kazemi [69] demonstrated that sabinene had а significant nitric oxide-scavenging action and suppressed the production of inducible nitric oxide synthase. Comparable findings were noted in prior research on the antioxidant activity of V. negundo essential oil, where sabinene was the predominant component [49]. In the H2O2 radical scavenging experiment, VAO exhibited significant scavenging activity, perhaps attributable to the presence of 1,8-cineole, β-caryophyllene sabinene. and as predominant ingredients [69,70]. Previous studies have evaluated the antioxidant activity of essential oil and extracts from the aerial portions of V. agnus castus, noting a significant presence of 1,8-cineole and β -caryophyllene in their composition, which demonstrated commendable antioxidant efficacy [64,71,72]. Due to the complexity of essential oils as combinations of several chemicals, their overall biological action is difficult to

elucidate.

Figure 4. (A–E) Antioxidant activity measured by IC50 values (μ L/mL) for VAO, VNO, and VTO: (A) DPPH radical scavenging, (B) H2O2 radical scavenging, (C) NO radical scavenging, (D) reducing power activity, (E) metal chelating activity. Statistically significant differences were analysed using one-way ANOVA and Tukey post hoc testing. Significant changes between treatment groups are shown as follows: *** p < 0.001, ** p < 0.005, * p < 0.05. Values are expressed as mean ± standard deviation, n = 3.

3.5. Herbicidal (Phytotoxic) Activity

examined materials exhibited The significant phytotoxic effects on the germination and development of wild radish (R. raphanistrum) seedlings in a concentration-dependent manner. At the maximum concentration (100 µL/mL), VAO inhibited seed germination, root shoot growth growth, and of R. raphanistrum by 66.67%, 96.66%, and 89.09%, respectively. VNO exhibited inhibition rates of 90.0%, 89.39%, and 97.57%. respectively, whereas VTO demonstrated inhibition rates of 100%,

99.39%, and 92.12%, respectively (Tables 2–4). According to the IC50 values, VAO exhibited IC50 values of 82.89, 19.468, and 37.95 μ L/mL concerning seed germination, root development, and shoot growth, respectively. The IC50 values for VNO were 50.13, 47.06, and 16.75 μ L/mL, respectively. The IC50 values for VTO were 29.5, 9.33, and 27.13 μ L/mL, respectively. (Tables 2–4).

Table 2. Mean % inhibition and IC50 values for seed germination inhibition by tested essential oils.

Samples		% Inhi	IC ₅₀ V	alues (µL Triplicate	Mean IC ₅₀ Values				
	20 µL/mL	40 µL/mL	60 µL/mL	80 µL/mL	100 µL/mL	I	п	ш	$(\mu L/mL) \pm SD$
VAO	3.33 ± 5.77 h	3.33 ± 5.77 h	$40 \pm 0.00^{\circ}$	43.33 ± 5.77 e ⁴	66.66 ± 5.77 ^{el}	78.94	81.17	88.57	82.89 ± 5.04
VNO	23.33 ± 5.77 ⁸	43.33 ± 5.77 ^{ef}	56.66 ± 5.77 de	76.66 ± 5.77 bc	90.00 ± 0.00 ^{ab}	51.11	55.294	44.00	50.13 ± 5.7
VTO	33.33 ± 5.77 %	60.00 ± 0.00 ⁴	90.00 ± 0.00 *	93.33 ± 5.77 *	100.00 ± 0.00 *	31.764	25.00	31.764	29.50 ± 3.9
Pendimethalin	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00				

Table 3. Mean % inhibition and IC50 values for root length inhibition by tested essential oils

Samples		IC ₅₀ V	ilues (µL/ Triplicates	Mean IC ₅₀ Values					
	20 µL/mL	40 µL/mL	60 µL/mL	80 µL/mL	100 µL/mL	1	п	ш	$(\mu L/mL) \pm SD$
VAO	45.15 ± 1.0 *	66.36 ± 0.9 ^d	80.90 ± 0.9 °	89.69 ± 0.5 b	96.66 ± 0.5 *	18.963	19.161	20.28	19.468 ± 0.7
VNO	32.27 ± 1.6 h	45.45 ± 0.9 ^g	58.48 ± 1.0 °	68.78 ± 2.2 ^d	89.39 ± 2.6 ^b	46.529	47.00	47.67	47.06 ± 0.5
VIO	$52.42 \pm 2.2^{+1}$	70.00 ± 1.8 ^a	83.03 ± 1.3 °	92.12 ± 1.04 ^b	99.39 ± 1.04 *	9.766	9.766	8.479	9.337 ± 0.7
Pendimethalin	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00				

Table 4. Mean % inhibition and IC50 values for shoot length inhibition by tested essential oils.

Samples	% Inhibition of Shoot Length IC ₃₀ Values (µL/mL) in Triplicates									
	20 µL/mL	40 µL/mL	60 µL/mL	80 µL/mL	100 µL/mL	1	п	ш	$(\mu L/mL) \pm SD$	
VAO	37.57 ± 0.5^{k}	$52.72 \pm 1.8^{+1}$	63.48 ± 0.6 #	77.57 ± 0.5 °	89.09 ± 0.9 bc	37.52	37.58	38.75	37.95 ± 0.6	
VNO	$51.21 \pm 1.3^{+1}$	64.24 ± 2.7 ⁶	74.54 ± 0.9 °	83.78 ± 0.2^{-4}	97.57 ± 0.5*	17.43	17.42	15.41	16.75 ± 1.2	
VTO	45.15 ± 0.5^{1}	58.48 ± 1.0^{h}	68.03 ± 0.6 ¹	85.90 ± 1.2 ^{ed}	92.12 ± 0.5 b	28.65	26.417	26.33	27.13 ± 1.3	
Pendimethalin	100.00 ± 0.01	100.00 ± 0.01	100.00 ± 0.0	100.00 ± 0.00	100.00 ± 0.00					

The phytotoxic potential of essential oils from many Vitex species, including V. agnus-castus, V. negundo. and V. simplicifolia, has been documented in other plants and weeds. Nonetheless, no research has been documented about the phytotoxic potential of V. trifolia. The current investigation shown that VTO was more effective against R. raphanistrum than VNO and VAO. The inhibitory impact of VTO on R. raphanistrum may be attributed to elevated levels of β caryophyllene (16.2%) and its synergistic interaction with other predominant and trace chemicals in the oil. Previous results indicated that β -caryophyllene inhibits germination and seedling development in many plant species, including Brassica campestris, Raphanus sativus, Vigna radiata, and Solanum lycopersicum [22]. VNO demonstrated significant suppression and of germination seed shoot development, but VAO exhibited superior inhibition of root growth. The inhibitory impact of the samples may be attributed to the presence of phytotoxic chemicals, including β -caryophyllene, 1,8-cineole, sabinene, which and are principal constituents of essential oils exhibiting phytotoxic action [22,74]. Moreover, 1,8cineole was shown to disrupt the normal development of Nicotiana tabacum by inhibiting DNA synthesis in the cell nuclei and organelles of root apical meristem cells [75]. Research has shown that the terpenoids in essential oils have phytotoxic effects on plants, leading to morphological and physiological changes in cells that hinder plant development [76].

3.6. Correlation of Essential Oil Components and Biological Activities

The Pearson correlation coefficient of major essential oil constituents, which was greater than two percent, as well as the antioxidant and herbicidal activities of Vitex species, revealed that 5-(1-isopropenyl-4,5-

dimethylbicyclo[4.3.0]nonan-5-yl)-3-

methyl-2-pentenol acetate and βcaryophyllene exhibited a strong positive correlation with DPPH radical scavenging activity and Fe2+ metal chelating activity. Additionally, y-terpinene was found to have a positive correlation with Fe2+ metal chelating activity. In their study, Dahham et al. [77] have provided evidence that β -caryophyllene has a significant DPPH scavenging activity. The compounds α -terpinyl acetate, 1,8-cineole, epi- α -cadinol, α -pinene, and β -farmesene

shown a slight association with the ability to scavenge H2O2 radicals. Terpinen-4-ol, α -terpinene, and viridiflorol demonstrated a link with nitric oxide radical scavenging activity and reducing power activity, although a slight one. Terpinen-4-ol was shown to induce relaxation in rabbit duodenal relaxation [78], and it is presumed that this relaxation was not mediated by the production of nitric oxide. The essential oils that were examined for their herbicidal effect indicated that 5-(1isopropenyl-4,5-

dimethylbicyclo[4.3.0]nonan-5-yl)-3-

methyl-2-pentenol acetate βand caryophyllene demonstrated a significant positive connection with the suppression of seed germination. In contrast, it was shown that linalool and β -caryophyllene exhibited a moderate association with root length inhibition. On the other hand, terpinen-4-ol, α -terpinene, and viridiflorol were connected with a substantial positive correlation with shoot length inhibition. There is evidence that plants that possess high amounts of β -caryophyllene have the ability to exert phytotoxic effects on several types of weeds [79]. The results of the correlation coefficient were supported by in vitro activities that were conducted as part of the study that was given, in addition to studies that had been published in the past. An illustration of Pearson's coefficient correlation between the components of essential oils and the biological activity of those components can be seen in Figure 5.

Figure 5. There is a correlation between the chemical components of essential oils and the biological activities of Vitex species. In this context, the abbreviations DPPH and H2O2 represent the percentage of inhibition of radical scavenging activity at a concentration of 50 μ L/mL. The abbreviation NO represents the percentage of inhibition of NO radical scavenging activity at a concentration of 50 µL/mL. The abbreviation RPA represents the percentage of inhibition of reducing power activity at a concentration of 50 µL/mL. FeMCA represents the percentage of inhibition of Fe2+ metal chelating activity at a concentration of 50 μ L/mL. The abbreviation SGI represents the percentage of seed germination at a concentration of 100 $\mu L/mL$. The abbreviation RLI represents the percentage of root length at 100 µL/mL.

3.7. Molecular Docking

In addition, we investigated whether the primary phytoconstituents found in VAO, VNO, and VTO physically connect with the receptors for antioxidant proteins (human peroxiredoxin 5, PDB: 1HD2) and 4-hydroxyphenylpyruvate dioxygenase (HPPD, PDB: 6J63). Due to the fact that the essential oils that were tested exhibited a high level of free radical inhibition, the enzyme human peroxiredoxin 5 was chosen for this purpose. This enzyme has a wider range of action against reactive oxygen species (ROS) and is primarily

engaged in the mechanism that protects against stress [80,81]. HPPD was chosen because it is known to be the target protein drugs that have post-emergence for herbicidal action. This provided the basis for the selection of HPPD. Based on the findings of our investigation, it was discovered that the essential oils that were put through their paces had a high level of post-emergence herbicidal efficacy against the receptor species that were chosen as the target enzyme [18,38]. Thirteen-epioxide. out manoyl of all the phytocompounds that were chosen, had the highest binding affinity with human peroxiredoxin 5 (-6.2 kcal mol) and HPPD (-8.7 kcal/mol). It was determined that the optimal docked stance was the one that had the lowest binding energy by doing an introspective analysis of the various docked poses. As shown in Figure 6B, the best docked posture of 13-epi-manoyl oxide had several Van der Waal contacts with amino acid residues such as Phe A:424, Phe A:419, and Phe A:381. These connections included two pi-alkyl interactions, one pi-sigma interaction, and other interactions. In a similar manner, the best docked posture of 13-epi-manoyl oxide displayed alkyl contact with 1HD2 that included the amino acids Ala A:90 and Arg A:86, as well as Van der Waal interaction. The docking research of nitisinone (CID:115355) was also carried out using HPPD for the goal of providing a point of comparison. It is well known that nitisinone, also known as 2-[2-nitro-4-(trifluoromethyl)benzoyl]cyclohexane-1,3dione (NTBC), is an inhibitor of highpotential prostate cancer. The docking research of ascorbic acid, which is a wellwas known antioxidant, carried out utilising 1HD2 as the method of investigation. NTBC complexed with 6J63 exhibited a binding energy of -8.9

kcal/mol, which is in close proximity to the binding energy of 13-epi-manoyl oxide, which was -8.7 kcal/mol respectively. On the other hand, binding energy of ascorbic acid complexed with 1HD2 came out to be -5.7 kcal/mol, which was higher than most of the compounds 13-epi-manoyl oxide such as (-6.2)caryophyllene (-6.1 kcal/mol), oxide 5-(1-isopropenyl-4,5kcal/mol), dimethylbicyclo [4.3.0]nonan5-yl)-3methyl-2-pentenol acetate (-6.1 kcal/mol), β -caryophyllene (-6.0 kcal/mol), and viridiflorol (-5.9 kcal/mol), as shown in Figure 7. When the values of binding free energy are lower, it indicates that the interaction between the receptor and the ligand is more substantial. Previous in silico investigations that were published by Alminderej et al. [73] showed that a phenylpropanoid-rich Piper cubeba essential oil (EO) offered comparable results in terms of a postulated in vitro antioxidant activity by targeting human periredoxin 5. Our findings were compatible with these findings. The chemicals viridiflorol and caryophyllene oxide demonstrated ล substantial interaction with the 1HD2 receptor in this analysis, just as they did in the previous study. In a recent research that focused on the phytotoxic potential of Calycolpus goetheanus essential oil, it was discovered that the primary constituents of the specimen, namely 1,8-cineole and β caryophyllene, had a positive interaction with the HPPD protein [18]. There is a high degree of concordance between these findings and the findings acquired in the current investigation.

Figure 6. (A–H) Docked conformations of molecules in the binding cavity of HPPD (PDB: 6)63 and human periredoxin 5 (PDB: HD2) with least binding energies. The complex established are (A) 6)63-THEC, (B) 6)63-13-epi-nanoyl oxide, (C) 6)63-5-(1-sepropenyl-4,5-dimethylbicyclo [4,3,0]nonan-5-yi)-3-methyl-2-pentenol acetate; (D) 6)63-caryophyllene oxide, (E) 1HD2-ascorbic acid; (D) 1HD2-13-epi-manoyl oxide, (C) 1HD2-5(1-1sopropenyl-4,5-dimethylbicyclo [4,3,0]nonan-5yi)-3-methyl-2-pentenol acetate; (H) 1HD2-5(H)-150-pentenol acetate; (H)-140-2(H)-2(H)-140-2(H)-140-2(H)-140-2(H)-140-2(H)-140-2(H)-140-2(H)-140-2(H)-140-2(H)-140-2(H)-140-2(H)-140-2(H)-140

It was shown that some drugs mostly interacted with two isoenzymes belonging to the cytochrome (CYP) family, namely CYP2C19 and CYP2C9, which indicates that these compounds are effective while exhibiting a low level of toxicity. Additionally, the boiled-egg prediction (Figure 8) and the bioavailability radar graph (Figure 9) were used to illustrate the drug-like qualities and gastrointestinal absorption of certain compounds derived from VAO, VNO, and VTO products. The bioavailability radar graphs reveal that the compounds that are present in the yellow zone of the boiled-egg graph are capable of passing across the blood-brain barrier (BBB), and the pink region of the graphs demonstrates that the compounds have the characteristics of drugs.

Figure 9. The drug-like characteristics of chosen compounds were shown in the pink region of the bioavailability radar for selected phytoconstituents. sabinene, 1,8-cineole, and 1,8-cineole Three: α -pinene, four: α -terpinyl acetate, five: β -farnesene, six with viridiflorol, seven with β -caryophyllene, and eight with β -iraldiene

terpine, ninefour-ol, 10-(1-isopropenyl4,5dimethylbicyclo[4.3.0]nonan-5-yl) is the chemical formula.acetate derivative of 3methyl-2-pentenol, 13-epimanoyl oxide, α phellandrene, and caryophyllene oxide are the first three compounds.

Table 5. In silico ADMET analysis of major constituents of VAO, VNO, and VTO

Table 6. Toxicological properties of selected compounds from VAO, VNO, and VTO

C	Hepatotoxicity		Carcinogenicity		Cyto	texicity	Immunotoxicity		Mutagenicity		Predicted LD ₃₀	Texicity
Compounds	Pr	Pb	Pr	Pb	Pr	Pb	Pr	Pb	Pr	Pb	(mg/kg)	Class
1.8-Cincole	NH	0.86	NC	0.68	NCy	0.75	NI	0.99	NM	0.96	2450	v
Sabinene	NH	0.81	NC	0.59	NCv	0.71	NI	0.51	NM	0.82	5000	v
a-Pinene	NH	0.86	NC	0.60	NCy	0.75	NI	0.99	NM	0.93	3700	v
x1 0000000000 10	Henati	muicity	Carcine	renicity	Cylot	micity	Immun	otesicity	Mutar	enicity	Budited ID-	Techtin
Compounds	Pr	Pb	Pr	Pb	Pr	Pb	Pr	15	Pr	Pb	(mg/kg)	Class
a-Terpinyl acetate	н	0.53	NC	0.66	NCy	0.80	NI	0.97	NM	0.94	4800	v
B-Famesene	NH	0.79	NC	0.73	NCY	0.81	NI	0.99	NM	0.98	5000	v
Wridiflorol	NH	0.77	NC	0.69	NCY	0.89	NI	0.87	NM	0.75	2000	IV
β-Caryophyllene	NH	0.80	NC	0.70	NCy	0.75	4	0.54	NM	0.95	5300	V
B-Iraldiene	NH	0.68	NC	0.79	NCY	0.78	NI	0.97	NM	0.93	4590	v
Terpine-4-ol	NH	0.80	NC	0.72	NCY	0.88	NL	0.99	NM	0.83	1016	IV
5-(1-isopropenyl-4,5- timethylbicyclo(4.3.0[nonan-5-yl]-3- methyl-2-pertenol sociate	NH	0.68	с	0.58	NCy	0.76	NI	0.99	NM	0.87	5000	v
13-exi manord oxide	NH	0.86	NC	0.69	NCv	0.75	NI	0.71	NM	0.91	4300	v
and the statement of a straight of the statement of the s	NIM	0.83	NC	0.52	NCV	0.80	NI	0.88	NM	0.92	57000	VI
a-Phellandrene												

4. Conclusions

Within the scope of this research, the chemical variety of the essential oils (EOs) that were obtained from three different species of Vitex that were discovered in the Tarai region of India was investigated and disclosed. The chemical composition of essential oils was characterised by the high quantity of terpenoids that they contained. In addition, the antioxidant and phytotoxic activities of the essential oils were investigated in vitro in order to evaluate the biological potential of the plant-derived products that were obtained from these Vitex species. The essential oils that were tested shown moderate to excellent potentials for antioxidants and phytotoxicity, according to a number of different tests. The molecular docking research claimed that the compounds

derived from essential oils (EOs) have the potential to be efficient phytotoxic and antioxidant agents. This conclusion was reached based on the examination of ligand interaction with proteins. According to the findings of the ADMET research, vast majority of the primary the compounds that are contained in essential oils are safe to use. All things considered, our analysis uncovered some fascinating biological activities of these essential oils, notably as natural antioxidants and phytotoxic agents, which lends credence to the use of the plant species in both the protection of crops and in traditional medicine. It is necessary to do in vivo research in order to investigate and assess the effectiveness and safety of these essential oils and the active components that they contain.

References

1. Ganapaty, S.; Vidyadhar, K. Phytoconstituents and biological activities of Vitex—A review. J. Nat. Rem. 2005, 5, 75–95. [CrossRef]

2. Gill, B.S.; Mehra, R.; Kumar, S. Vitex negundo and its medicinal value. Mol. Biol. Rep. 2018, 45, 2925–2934. [CrossRef] [PubMed]

3. Dugoua, J.J.; Seely, D.; Perri, D.; Koren, G.; Mills, E. Safety and efficacy of chastetree (Vitex agnus-castus) during pregnancy and lactation. Can. J. Clin. Pharmacol. 2008, 15, e74–e79.

4. Costa, M.R.; Ribeiro, C.G.; Santos-Filho, S.D.; Neves, R.F.; Fonseca, A.S.; Bernardo-Filho, M. An aqueous extract of Vitex agnus-castus alters the labeling of blood constituents with Technetium-99m. Braz. Arch. Biol. Technol. 2007, 50, 183– 188. [CrossRef] 5. Chaturvedi, G.; Singh, R. Experimental studies on the antiarthritic effect of certain indigenous drugs. Indian J. Med. Res. 1965, 53, 71.

6. Li, W.X.; Cui, C.B.; Cai, B.; Wang, H.Y.; Yao, X.S. Flavonoids from Vitex trifolia L. inhibit cell cycle progression at G2/M phase and induce apoptosis in mammalian cancer cells. J. Asian Nat. Prod. Res. 2005, 7, 615–626. [CrossRef]

7. Rani, A.; Sharma, A. The genus Vitex: A review. Pharmacogn. Rev. 2013, 7, 188. [CrossRef]

8. Koirala, N.; Dhakal, C.; Munankarmi, N.N.; Ali, S.W.; Hameed, A.; Martins, N.; Salehi, B. Vitex negundo Linn.: Phytochemical composition, nutritional analysis, and antioxidant and antimicrobial activity. Cell. Mol. Biol. 2020, 66, 1–7. [CrossRef]

9. Senatore, F.; Napolitano, F.; Ozcan, M. Chemical composition and antibacterial activity of essential oil from fruits of Vitex agnus-castus L. (Verbenaceae) growing in Turkey. J. Essent. Oil-Bear. Plants 2003, 6, 185–190. [CrossRef]

10. Jarry, H.; Spengler, B.; Porzel, A.; Schmidt, J.; Wuttke, W.; Christoffel, V. Evidence for estrogen receptor betaselective activity of Vitex agnus-castus and isolated flavones. Planta Med. 2003, 69, 945–947. [CrossRef]

11. Sathiamoorthy, B.; Gupta, P.; Kumar, M.; Chaturvedi, A.K.; Shukla, P.K.; Maurya, R. New antifungal flavonoid glycoside from Vitex negundo. Bioorg. Med. Chem. Lett. 2007, 17, 239–242. [CrossRef] [PubMed]

12. Sundaram, R.; Naresh, R.; Shanthi, P.; Sachdanandam, P. Antihyperglycemic effect of iridoid glucoside, isolated from the leaves of Vitex negundo in streptozotocin-induced diabetic rats with special reference to glycoprotein components. Phytomedicine 2012, 19, 211–216. [CrossRef] [PubMed]

13. Xin, H.; Hu, Y.; Zhang, Q.; Huang, B.; Zheng, H.H.; Qin, L. Study on chemical constituents in fruits of Vitex trifolia. Acad. J. Sec. Mil. Med. Univ. 2006, 27, 1038–1040.

14. Devcich, D.A.; Pedersen, I.K.; Petrie, K.J. You eat what you are: Modern health worries and the acceptance of natural and synthetic additives in functional foods. Appetite 2007, 48, 333–337. [CrossRef] [PubMed]

15. Botterweck, A.A.M.; Verhagen, H.; Goldbohm, R.A.; Kleinjans, J.; Van den Brandt, P.A. Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: Results from analysis in the Netherlands cohort study. Food Chem. Toxicol. 2000, 38, 599–605. [CrossRef]

16. Himani, S.K.M.; Arya, S.; Kumar, R.; Prakash, O. Essential Oil: Source of Antioxidants and Role in Food Preservation. Essential In Oils: Applications and Trends in Food Science Technology; and Springer: Berlin/Heidelberg, Germany, 2022; pp. 173–189. [CrossRef]

17. Bezerra, F.W.F.; de Oliveira, M.S.; Bezerra, P.N.; Cunha, V.M.B.; Silva, M.P.; da Costa, W.A.; Pinto, R.H.H.; Cordeiro, R.M.; da Cruz, J.N.; Chaves Neto, A.M.J.; et al. Extraction of Bioactive Compounds. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Inamuddin, A.M., Asiri, A., Isloor, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 149–167. ISBN 9780128173886. 18. De Franco, C.J.P.; Ferreira, O.O.; Antônio Barbosa de Moraes, Â.; Varela, E.L.P.; do Nascimento, L.D.; Percário, S.; de Oliveira, M.S.; de Andrade, E.H.A. Chemical Composition and Antioxidant Activity of Essential Oils from Eugenia Patrisii Vahl, E. Punicifolia (Kunth) DC., and Myrcia Tomentosa (Aubl.) DC., Leaf of Family Myrtaceae. Molecules 2021, 26, 3292. [CrossRef]

19. de Santana Oliveira, M. (Ed.) Essential Oils-Applications and Trends in Food Science and Technology, 1st ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; ISBN 978-3-030-99475-4. [CrossRef]

20. Lengai, G.M.; Muthomi, J.W.; Mbega, E.R. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci. Afr. 2020, 7, e00239. [CrossRef]