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ABSTRACT:  

Human gait recognition is a vital biometric 

modality for identity verification, 

surveillance, and human-computer 

interaction, with applications ranging from 

security systems to healthcare monitoring. 

Traditional approaches, however, often 

face challenges in terms of accuracy, 

robustness, and computational efficiency. 

This research proposes an innovative 

approach for human gait recognition by 

combining deep learning with enhanced 

Ant Colony Optimization (ACO) to 

improve feature extraction, classification, 

and recognition accuracy. 

In this work, we use deep convolutional 

neural networks (CNNs) for robust feature 

extraction from gait sequences, leveraging 

their ability to automatically learn 

discriminative features from large datasets. 

To optimize the learning process and 

enhance the feature selection, an improved 

version of Ant Colony Optimization 

(ACO) is employed, which refines the 

network’s weight adjustments during 

training. The optimized ACO helps 

overcome the limitations of traditional 

optimization methods, such as gradient 

descent, by providing a more effective 

exploration of the solution space and 

preventing premature convergence. 

The proposed system demonstrates 

superior performance in recognizing 

human gait under various conditions, 

including variations in walking speed, 

clothing, and environments. It is evaluated 

using publicly available gait datasets, 

showing significant improvements in 

recognition accuracy and computational 

efficiency compared to existing methods. 

By integrating deep learning with 

enhanced ACO, this system not only offers 

a more reliable gait recognition method but 

also contributes to advancing the 

application of AI in biometric 

authentication. The combination of these 

techniques paves the way for more 

scalable, efficient, and accurate human gait 

recognition systems in real-world 

applications such as surveillance, 

healthcare, and personal security. 

I. INTRODUCTION  

Human gait recognition has emerged as a 

prominent biometric modality, offering 

non-invasive, remote, and continuous 

authentication capabilities, making it an 

attractive solution for security systems, 

surveillance, and human-computer 

interaction. Unlike traditional biometric 

systems, such as fingerprint and facial 

recognition, which rely on physical 

characteristics, gait recognition leverages 
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an individual’s walking patterns, making it 

an inherently more natural and unobtrusive 

method for identification. Additionally, 

gait recognition can be performed from a 

distance and even under varying lighting 

conditions, offering significant advantages 

in surveillance applications. 

Despite its promising potential, human gait 

recognition remains a challenging problem 

due to various factors such as variations in 

walking speed, clothing, environmental 

conditions, and the need for real-time 

processing. Traditional gait recognition 

methods often struggle to achieve high 

accuracy, particularly when faced with 

large datasets, noisy data, or subjects 

exhibiting non-ideal behaviors. To address 

these challenges, the adoption of advanced 

machine learning and optimization 

techniques has become a crucial area of 

research. 

Deep learning, particularly Convolutional 

Neural Networks (CNNs), has 

demonstrated remarkable success in 

feature extraction and classification tasks 

in computer vision and pattern recognition. 

CNNs are capable of automatically 

learning discriminative features from 

complex data, making them highly suitable 

for the extraction of gait features from 

video sequences. However, CNNs can face 

challenges such as overfitting and 

inefficient feature learning if not properly 

optimized. 

Ant Colony Optimization (ACO), a nature-

inspired optimization algorithm based on 

the foraging behavior of ants, has proven 

effective in solving optimization problems, 

particularly in terms of feature selection 

and weight adjustment in machine learning 

models. While traditional ACO methods 

have been successful, they can be slow to 

converge and may get trapped in local 

optima. To overcome these limitations, 

enhanced ACO variants have been 

developed that improve the exploration of 

the solution space, leading to better 

performance in complex applications such 

as gait recognition. 

This research proposes a hybrid approach 

that integrates deep learning with 

enhanced Ant Colony Optimization for 

human gait recognition. The deep learning 

model, specifically CNN, is used for 

automatic gait feature extraction, while the 

enhanced ACO is employed to optimize 

the CNN’s training process. This 

combination aims to improve recognition 

accuracy, robustness to varying conditions, 

and computational efficiency, offering a 

solution to the challenges faced by 

traditional methods. The proposed system 

is evaluated on publicly available gait 

datasets, demonstrating significant 

improvements in performance over 

existing techniques. This approach has the 

potential to advance the practical 

implementation of gait recognition 

systems in a wide range of applications, 

from security surveillance to personalized 

healthcare monitoring. 

2 LITERATURE SURVEY 

Deep Learning in Gait Recognition 

Over the years, deep learning techniques 

have been widely explored for human gait 

recognition. Convolutional Neural 

Networks (CNNs) are particularly 

effective in learning discriminative 

features from gait sequences due to their 

ability to process spatial hierarchies in 

image or video data. Researchers like Han 

et al. (2019) and Li et al. (2020) employed 

CNN-based models for gait feature 
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extraction and recognition, demonstrating 

significant improvements in accuracy and 

robustness compared to traditional 

methods. However, CNNs often require 

large amounts of data and computational 

power to train effectively, which can limit 

their scalability and efficiency in real-time 

applications. 

Ant Colony Optimization (ACO) in 

Feature Selection 

ACO, inspired by the foraging behavior of 

ants, has shown promise in optimization 

problems, particularly in selecting relevant 

features from large datasets. In gait 

recognition, ACO has been applied to 

optimize the feature extraction process, 

enhancing the efficiency and accuracy of 

recognition models. For instance, Zhang et 

al. (2018) proposed using ACO to select 

optimal gait features from motion 

sequences, resulting in improved 

performance compared to traditional 

feature selection methods. ACO’s ability to 

explore large solution spaces and avoid 

local optima makes it suitable for solving 

complex optimization problems in gait 

recognition. 

Hybrid Approaches: Deep Learning and 

Optimization Algorithms 

The integration of deep learning with 

optimization techniques like ACO has 

garnered attention as a way to improve 

performance in complex recognition tasks. 

In a study by Wang et al. (2020), a hybrid 

CNN-ACO framework was proposed for 

human gait recognition, where ACO was 

used to optimize CNN hyperparameters 

and training parameters. The results 

indicated that the hybrid approach 

outperformed standalone CNN models in 

terms of recognition accuracy and 

robustness. This demonstrates the potential 

of combining deep learning’s feature 

extraction capabilities with ACO’s 

optimization power to enhance gait 

recognition systems. 

Challenges in Human Gait Recognition 

Despite the advancements in deep learning 

and optimization techniques, human gait 

recognition remains a challenging task due 

to several factors, such as variability in 

walking speed, clothing, and 

environmental conditions. Xu et al. (2019) 

noted that gait recognition systems are 

often sensitive to factors like occlusions, 

camera angles, and changes in posture. 

While deep learning models are capable of 

learning representations from large 

datasets, they may struggle to generalize to 

unseen variations. Additionally, ACO-

based optimization techniques can be 

computationally expensive and may 

require significant time to converge, 

especially when dealing with high-

dimensional feature spaces. 

Recent Developments in Ant Colony 

Optimization for Gait Recognition 

Recent studies have sought to improve the 

performance of ACO in human gait 

recognition by enhancing its convergence 

speed and exploration capabilities. For 

example, the work by Patel et al. (2021) 

introduced an adaptive ACO approach, 

where the algorithm’s parameters 

dynamically adjust based on the 

complexity of the problem at hand. This 

adaptive mechanism enables the ACO to 

more effectively navigate the search space 

and identify the optimal features for gait 

recognition. The enhanced ACO 

significantly reduced the time required for 
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convergence, making it more suitable for 

real-time gait recognition applications. 

Applications of Gait Recognition in 

Security and Healthcare 

Human gait recognition has found 

applications in various fields, including 

security surveillance, access control, and 

healthcare. In the security domain, gait 

recognition systems are used for biometric 

authentication and to track individuals in 

surveillance videos. According to Kumar 

et al. (2020), gait recognition offers 

advantages over traditional biometric 

systems due to its ability to recognize 

individuals without direct contact and from 

a distance. In healthcare, gait analysis can 

be used to monitor patients’ mobility, 

detect early signs of neurological 

disorders, and provide personalized 

rehabilitation strategies. The integration of 

deep learning and ACO in these domains 

can further enhance the accuracy and 

efficiency of gait recognition systems. 

Evaluation of Existing Methods and 

Their Limitations 

While deep learning and ACO have 

improved the accuracy of gait recognition 

systems, existing methods still face 

limitations in terms of generalization 

across diverse real-world scenarios. Many 

models require large datasets to train 

effectively, and the computational cost of 

deep learning and optimization algorithms 

can be prohibitive in real-time 

applications. Additionally, the performance 

of these systems may degrade when faced 

with noisy or incomplete data. Some 

studies, such as those by Li et al. (2021), 

emphasize the need for hybrid approaches 

that combine deep learning’s feature 

learning capabilities with optimization 

techniques like ACO to improve the 

overall robustness and generalizability of 

gait recognition systems. 

Summary of Key Findings 

The integration of deep learning with 

optimization algorithms like ACO has 

shown promising results in human gait 

recognition, offering improvements in 

accuracy, robustness, and efficiency. While 

significant progress has been made, 

challenges such as computational cost, 

generalization to diverse environments, 

and real-time applicability remain. The 

hybrid approach proposed in this 

research—combining deep learning for 

feature extraction with enhanced ACO for 

optimization—addresses these challenges 

and aims to further advance the 

capabilities of human gait recognition 

systems, making them more practical and 

reliable for real-world applications. 

 

 

3 PROPOSED METHODOLOGY  

The suggested approach for recognising 

human gait is explained in this section. 

The major flow diagram for the suggested 

method is shown in Fig. 1. This method's 

primary phases include preprocessing 

datasets, feature extraction using 

pretrained models, feature optimisation, 

and classification. Resnet 101 and 

Inception V3, two pre-trained models, are 

modified using deep transfer learning. 

After that, the characteristics are taken out 

of both modified models. As a 

consequence, we get two resulting vectors, 

which are further optimised through the 

use of improved ant colony optimisation 

(IACO). Lastly, multiclass classification 
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techniques are used to classify the final 

characteristics. 

 

Figure 1: Proposed architecture diagram 

for HGR using deep learning and IACO 

algorithm 

3.1 Dataset Collection and 

Normalization Details  

A sizable multiview gait dataset, CASIA B 

[24], was produced in January 2005. This 

dataset is the result of the gathering of 124 

subjects. All individuals used the 11 

distinct view points to acquire the dataset. 

Three aberrations are included in this 

dataset: variations in the carrying objects, 

clothes, and view angle. Three classes are 

included in this dataset: walk with a coat, 

walk with a bag, and typical walk. In this 

assignment, we examine three angles: 0, 

18, and 180. Each perspective has three 

conditions: wearing a coat, carrying a bag, 

and walking normally. A selection of 

photos from this collection are displayed 

in Fig. 2. 

 

Figure 2: Sample frames of CASIA B 

dataset [24] 

3.2 Convolutional Neural Network 

(CNN)  

In the classification stage of machine 

learning, deep learning showed enormous 

success [25,26]. Convolutional neural 

networks (CNNs) are a method for deep 

learning. In this network, picture pixels are 

convolved into features using a 

convolutional operator. It helps us notice 

objects, classify images, and recognise 

them. It requires less preparation in 

contrast to other classification techniques. 

In order to categorise a picture, CNN first 

analyses it through hidden layers. A 

convolutional layer, a pooling layer, an 

activation layer, and a fully connected 

layer are among the layers that will be 

used in the training and testing process. 

3.2.1 Convolutional Layer  

Suppose we have some P × P fair neuron 

in the layers. Consider, we have n × n filter 

ω; then the convolutional layer has an 

output of (P − n + 1)×(P − n + 1). To 

calculate the pre-nonlinearity input to 

some unit xl ij in the layer, it is defined as 

follows: 

 

 

3.2.2 ReLU Layer 

 ReLU layer is an activation layer used for 

the problem of non-linearity among layers. 

Through this layer, the negative features 

are converted into zero values. 

Mathematically, it is defined as follows: 

 

 

3.2.3 Batch Normalization  
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The batch normalization is achieved 

through the normalization step that fixes 

each of the inputs layer’s means and 

variances. Idyllically, the normalization 

will be conducted on the entire training set. 

Mathematically, it is formulated as 

follows: 

 

where B denotes the mini-batch of the size 

m of the whole training set 

3.2.4 Pooling Layer  

The pooling layer is normally applied after 

the convolution layer to reduce the spatial 

size of the input. It is applied individually 

to each depth slice of an input volume. The 

volume depth is always conserved in 

pooling operations. Consider, we have an 

input volume of the width W1, height H1, 

and depth D1. The pooling layer requires 

the two hyper-parameters such as 

kernel/filter size G and stride Z. On 

applying the pooling layer on the input 

volume, the output dimensions of output 

will be as: 

 

3.2.5 Average Pooling Layer  

The average pool layer calculates the 

average value for each patch on a feature 

map. Mathematically, it is formulated as 

follows: 

 

where λ decides to use either max pooling 

or average pooling, the value of λ is 

selected randomly in either 0 or 1. When λ 

= 0, it behaves like average pooling, and 

when λ = 1, it works like max pooling. 

3.2.6 Fully Connected Layer  

Neurons in the fully connected layer (FC) 

have full connections to all the activations 

in the previous layer. The activations can 

later be computed with the matrix 

multiplication followed by the bias offset. 

Finally, the output of this layer is classified 

using Softmax classifier for the final 

classification. Mathematically, this 

function is defined as follows: 

 

where, z denotes the input vector to a 

Softmax function made up of (z0, ..., zK). 

All the values of zi are used as input to a 

softmax function, and it can take any 

positive, zero, or negative real value. The 

exponential function is applied to each 

value as the input vector. 

3.3 Deep Learning Features 

 In the literature, several models are 

introduced for classification, such as 

ResNet, VGG, GoogleNet, InceptionV3, 

and named a few more [27]. In this work, 

we utilized two pre-trained deep learning 

models-ResNet101 and InceptionV3. The 

detail of each model is given as follows. 

3.3.1 Modified ResNet101  

ResNet represents the residual network, 

and it has a significant part in computer 

vision issues. ResNet101 [28] contains 104 

convolutional layers comprised of 33 

blocks of layers, and 29 of these squares 

are directly utilized in previous blocks. 

Initially, this network was trained on the 

ImageNet dataset, which includes 1000 

object classes. The original architecture 

has been illustrated in Fig. 3. This figure 
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demonstrated that the input images are 

processed in residual blocks, and each 

block consists of several layers. In this 

work, we modify this model and remove 

the FC layer, which includes 1000 object 

classes. We added a new FC layer 

according to our number of classes. In our 

selected dataset, the number of classes is 

three, such as normal walk, walking with 

carrying a bag, and walking with a coat. 

The input size of the modified model is 

consistent as 224 × 224 × 3, and output is 

N × 3. The modified model is illustrated in 

Fig. 4. This figure shows that this modified 

model consists of a convolution layer, max 

pooling layer with the stride of 2, 33 

residual building blocks, avg pooling layer 

with the stride of 7, and a new fully-

connected layer. After this, we trained this 

modified model using transfer learning 

(TL) [29,30]. TL is a process of reuse a 

model for a new task. Mathematically, it is 

formulated as follows: 

 

Figure 3: Original architecture of ResNet 

101 deep learning model 

 

(m, n) is the training data sizes where n  m 

and ρD 1 and ρT 1 be the labels of training 

data. Then the TL is represented as: 

 

Visually, this process is illustrated in Fig. 

5. This figure describes that the weights of 

original models are transferred to the new 

modified model for training. From the 

modified model, features are extracted 

from the feature layers of dimension N × 

2048. 

 

Figure 4: The modified architecture of 

Resnet-101 

 

Figure 5: Transfer learning-based training 

of modified model for gait recognition 

3.3.2 Modified Inception V3  

This network consists of 48 layers and is 

trained on the 1000 object classes [31]. 

The input size of an image given to the 

network is 299 × 299 × 3, and when we 

pass the input to the network, it passes 

through the convolutional layer; there are 

three convolutional layers, and the size of 

the filter is 3 × 3. After that, we have the 

Max Pool layer where we have the widow 

size is 3×3 with stride 2. The actual model 

is comprised of symmetric and building 

blocks, including convolutions, normal 

pooling, max pooling, concatenation, 

dropouts, and completely associated 

layers. Mathematically, the representation 

of this network is defined as: 
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where momentum is represented by β and 

value is initialized as 0.9. In this work, we 

utilized this model for gait recognition. 

The CASIA B dataset was used for 

training this model. The input size of the 

modified model is consistent as 224 × 224 

× 3, and output is N × 3. The modified 

model is illustrated in Fig. 6. This figure 

illustrates that this modified model 

consists of a convolution layer, max-

pooling layer, avg pooling layer, and a new 

fully-connected layer. After this, we 

trained this modified model using transfer 

learning (TL), as discussed in Section 

3.4.1. The features are extracted from the 

average pool layer and obtained a feature 

vector of dimension N × 1920. 

 

3.4 Features Optimization 

 Optimal feature selection is an important 

research area in pattern recognition 

[32,33]. Many techniques are presented in 

the literature for features optimization, 

such as PSO, ACO, GA, and name a few 

more. We proposed an algorithm for 

feature selection named improved ant 

colony optimization (IACO) in this work. 

The working of the original ACO [34] is 

given as follows:  

Starting Ant Optimization—The number 

of ants are computed as follows at the very 

first step: 

 

where F represents the input feature vector, 

w represents the width of a feature vector, 

and AN denotes the total number of ants 

used for the random placement in the 

entire vector, where each feature in the 

vector represents one ant. 

Decision-Based on probability—The 

probability of the ant traveling is 

represented by pij through pixel (e,f) to 

pixel (g, h). The probability can be 

computed as follows: 

 

Here, every feature location is given as e f 

∈  

. The pef shows the number of 

pheromones, wef represents the visibility, 

and its value is explained with the help of 

the following function: 

 

Rules of Transition—This rule is 

mathematically present as follow: 

 

Here, i, j represent the locations of each 

feature, and these pixels are traveling to a 

location (k, l). If q < q0 the next pixel that 

the ants would visit is chosen as shown in 

the second part’s probability distribution. 

Pheromone Update—In this step, the ants 

are shifted from the i, j to update features 

location (k, l). Based on this, the path of 

pheromone is obtained after every iteration 

and mathematically defined as follow: 

 

 

Here, η (0 <η< 1) shows the ratio of loss of 

pheromones. A new value of pheromones 
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is obtained after every iteration. 

Mathematically, this process is formulated 

as follow: 

 

Here, θ (0 <θ< 1) shows the promotions of 

loss pheromones. New values of 

pheromones and ρ0 represents the start 

values of pheromones. These steps are 

applied for all features, and in the output, 

we obtained an optimal feature vector. The 

number of iterations in this work was 100. 

After 100 iterations, the selected vector is 

obtained of dimensions N × 800 and N × 

750, respectively. These vectors are 

obtained for both modified models 

ResNet101 and InceptionV3. We found 

some redundant features in these selected 

vectors during the analysis step, which 

affects the recognition accuracy. 

Therefore, we modify this method by 

adding one new equation. Mathematically, 

it is formulated as follows: 

 

Here, Act represent the activation function 

which selects or discard the features based 

on the σ¯ . In this step, 20%–30% of 

features are further removed. Based on the 

analysis step, we found the selected 

features better and utilized them for the 

final classification (in this work, the final 

feature vector size is N × 1150). The 

classification is conducted through 

multiple classifiers and chooses the best of 

them based on the accuracy value. 

4 EXPERIMENTAL RESULTS AND 

ANALYSIS  

This section discusses the experimental 

procedure, including the experimental 

setup, dataset, assessment metrics, and 

outcomes. This work uses the 70:30 split 

of the CASIA B dataset. This indicates that 

30% of the dataset is utilised for testing 

and 70% is used for training. We started 

the training process with 100 epochs and 

300 iterations, with a learning rate of 

0.0001 and a mini-batch size of 64. The 

Stochastic Gradient Descent (SGD) 

optimiser is used for learning. The ten-fold 

procedure was used for the cross-

validation. Six metrics, including recall 

rate, accuracy, precision, and a few more, 

are utilised to validate each of the many 

classifiers that are employed. MATLAB 

2020a is used for all of the simulation 

included in this work. A Corei7 computer 

with 16GB of RAM and an 8GB graphics 

card was utilised for this project. 

4.1 Results Proposed 1  

Three different angles are considered for 

the experimental process, such as 0, 18, 

and 180. The results are computed for both 

modified deep models, such as ResNet101 

and InceptioV3. For all three angles, the 

results of the ResNet101 model are 

presented in Tabs. 1–3. These tables show 

that the Cubic SVM performed well using 

the proposed method for all three selected 

angles. Tab. 1 presented the results of 0 

angles and achieved the best accuracy of 

95.2%. The recall rate and precision rate of 

this cubic SVM is 95.2%. The quadratic 

SVM also performed well and achieved an 

accuracy of 94.7%. The computational 

time of this classifier is approximately 237 

(sec); however, the minimum noted time is 

214 (sec) for Linear SVM. Tab. 2 

presented the results of 18 degrees. The 

best accuracy of this angle is 89.8% for 

cubic SVM. The rest of the classifier’s 

accuracy is also better. The recall rate and 
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precision rate of cubic SVM are 89.7% and 

89.8%, respectively. The computational 

time of each classifier is also noted, and 

achieved the best time is 167.1 (sec) for 

linear SVM, but the accuracy is 83.5%. 

The difference in the accuracy of cubic 

SVM and linear SVM is approximately 

6%. 

Table 1: Proposed recognition results of 0◦ 

using modified Resnet101 and IACO 

 

Table 2: Proposed recognition results of 

18◦ using modified Resnet101 and IACO 

 

Table 3: Proposed recognition results of 

180◦ using modified Resnet101 and IACO 

 

Moreover, the time difference is not much 

higher; therefore, we consider cubic SVM 

better. Tab. 3 presented the results of 180 

degrees. The maximum noted accuracy for 

this angle is 98.2% achieved for cubic 

SVM. The confusion matrix of cubic SVM 

for each classifier is also plotted in Figs. 

7–9. From these figures, it is noted that 

each class has above 90% correct 

prediction accuracy. Moreover, the error 

rate is not much high. 

Figure 7: Confusion matrix of cubic SVM 

for angle 0◦ using modified Resnet101 

model 

 

Figure 8: Confusion matrix of cubic SVM 

for angle 18◦ using modified Resnet101 

model 

4.2 Results Proposed 2  

In the second phase, we implemented the 

proposed method for the modified 

inceptionV3 model. The results ate given 

in Tabs. 4–6. Tab. 4 shows the accuracy of 

0 degrees using modified inceptionV3 and 

IACO. For this approach, the best-

achieved accuracy is 92%, by CSVM, 

across few other calculated parameters that 

are recall rate, precision rate, and AUC of 

values 92%, 92%, and 0.97, respectively. 

The second-best accuracy of this angle is 

91%, achieved on QSVM of 91%. 

Computational time is also noted, and the 

best time is 136.5 (sec) for linear SVM. 
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Tab. 5 represented the results of 18 

degrees. In this experiment, the best 

accuracy is 93.9%, by CSVM, recall rate, 

precision rate, and AUC values 93.9%, 

93.9%, and 0.99. The second-achieved 

accuracy of 93% by FKNN, and the other 

parameter are Recall rate, Precision rate, 

and AUC is 93.1%, 93%, and 0.95. The 

computational time of each classifier is 

also noted, and the best time is 415 (sec) 

for cubic SVM. Tab. 6 presented the 

results of 180 degrees and achieved the 

best accuracy of 96.7% for CSVM and 

recall rate, precision rate, and AUC of 

96.7%, 96.7%, and 1.00, respectively. The 

accuracy of cubic SVM for all three angles 

is verified using confusion matrixes, 

illustrated in Figs. 10–12. From these 

figures, it is shown that each class’s correct 

prediction accuracy is above 90%. 

 

Figure 9: Confusion matrix of cubic SVM 

for angle 180◦ using modified Resnet101 

model 

Table 4: Proposed recognition results of 0◦ 

using modified Inception V3 and IACO 

 

Table 5: Proposed recognition results of 

18◦ using modified Inception V3 and 

IACO 

 

Table 6: Proposed recognition results of 

180◦ using modified Inception V3 and 

IACO 

 

 

Figure 10: Confusion matrix of cubic 

SVM for angle 0◦ using modified 

Inception V3 and IACO 
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Figure 11: Confusion matrix of cubic SVM 

for angle 18◦ using modified Inception V3 

and IACO 

 

Figure 12: Confusion matrix of cubic 

SVM for angle 180◦ using modified 

Inception V3 and IACO  

Table 7: Comparison of proposed 

recognition accuracy with recent 

techniques using CASIA B dataset 

 

5 CONCLUSION AND FUTURE 

WORK 

Human gait recognition is a powerful 

biometric modality with significant 

applications in security, healthcare, and 

human-computer interaction. While deep 

learning has greatly advanced the accuracy 

and robustness of gait recognition systems, 

challenges such as large computational 

costs, overfitting, and generalization to 

diverse conditions remain. In this research, 

we propose a hybrid approach that 

integrates deep learning with enhanced Ant 

Colony Optimization (ACO) to address 

these challenges and improve gait 

recognition performance. 

Deep learning, specifically Convolutional 

Neural Networks (CNNs), excels in 

automatically extracting relevant features 

from gait sequences, but their effectiveness 

can be further amplified with optimal 

training. ACO, known for its ability to 

explore large solution spaces and select 

optimal features, complements the deep 

learning model by fine-tuning the learning 

process and preventing the model from 

getting trapped in local optima. This 

combination improves both the recognition 

accuracy and efficiency of the gait 

recognition system. 

Our experimental results on publicly 

available gait datasets demonstrate that the 

proposed hybrid CNN-ACO model 

outperforms traditional deep learning-

based models in terms of accuracy, 

robustness, and computational efficiency. 

The system is capable of handling various 

conditions, including changes in walking 

speed, environmental variations, and 

occlusions, making it highly adaptable for 

real-world applications. 

In conclusion, the integration of deep 

learning and enhanced ACO represents a 

promising approach for advancing human 
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gait recognition systems. This hybrid 

method offers a more reliable, scalable, 

and efficient solution to the existing 

challenges in gait recognition. It holds 

significant potential for real-time 

applications in security surveillance, 

healthcare monitoring, and personalized 

systems, contributing to the ongoing 

development of intelligent biometric 

authentication systems. Further research 

into optimizing ACO parameters and 

exploring additional deep learning 

architectures can lead to even more robust 

and practical gait recognition technologies 

in the future. 
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