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A B S T R A C T 

Aim: To predict the accuracy percentage of At - risk students based on High withdrawal and 
Failure rate. Materials and methods: Logistic Regression with sample size = 20 and 
Generalised Linear Model (GLM) with sample size = 20 was iterated different times for 
predicting accuracy percentage of At - risk students. The Novel sigmoid function used in 
Logistic Regression maps prediction to probabilities which helps to improve the prediction of 
accuracy percentage. Results and Discussion: Logistic Regression has significantly better 
accuracy (94.48 %) compared to GLM accuracy (92.76 %). There was a statistical significance 
between Logistic regression and GLM (p=0.000) (p<0.05). Conclusion: Logistic Regression with 
Novel Sigmoid function helps in predicting with more accuracy percentage of At - risk students. 
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Introduction 

The purpose of the study is to predict the accuracy 

percentage of At-Risk students in Universities. Now-a-days 

many colleges, Universities and schools have adapted the 

digital education systems as an alternative to the traditional 

education system. Everyone prefers the digital education 

system (Al-Shabandar et al. 2019). Many research studies have 

proved that High failure rate and withdrawal rate were the 

major concerns of the digital education systems (J. Chen et 

al. 2019). In upcoming years, if the problem is not solved it 

may lead to a low literature rate, because the digital 

education system is developing more rapidly. In many paid 

online course platforms still, students withdraw their courses 

or get less score because of lack of motivation and proper 

care (Sun et al. 2019). 

* Corresponding author: sashirekhak.sse@saveetha.com 

If these kinds of students are identified in the early stage it is 

easy for instructors in Universities to track the students and 

also students will get proper motivation and guidance 

(Chaplot, Rhim, and Kim 2016). 

Identifying At-risk students process was carried out by 

many researchers for developing digital education with a high 

literature rate. Around 20 articles published in IEEE and 16 

papers in Google scholar. (Chaplot, Rhim, and Kim 2016) Feed 

Forward Neural networks was implemented for predicting the 

accuracy percentage of At-Risk students. The accuracy was 

predicted on the basis of Clickstream and student sentiments 

by using Coursera Platform dataset of 2014 and predicted an 

accuracy of 80.5%. (Xing and Du 2019), Convolution neural 

network combined with Recurrent neural network to extract 

features consequently in order to make predictions for 

predicting the accuracy percentage of At-risk students and 

the dataset used to predict accuracy in this paper was the 
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online course “XuetangX” dataset. The results demonstrated 

an accuracy of 92.6%. (Geigle and Zhai 2017), Two-layer 

hidden Markov Model was used for predicting accuracy 

percentage of At- risk students on the basis of student’s 

behavioural patterns and results demonstrated that Low 

motivational status, withdrawal of course at early stage and 

failure rate are the major concerns and got an accuracy of 

80.93%. (Al-Shabandar et al. 2019), At-risk students accuracy 

was predicted using machine learning algorithms which 

includes GLM, Gradient Boost machine algorithm, Random 

Forest. The results of their work demonstrated an accuracy of 

91%, 90%, 91% respectively. The most cited article is proposed 

by the author (Al-Shabandar et al. 2019) focused on GLM with 

an accuracy of 91%. 

Previously our team has a rich experience in working on 

various research projects across multiple disciplines (Sathish 

and Karthick 2020; Varghese, Ramesh, and Veeraiyan 2019; 

S.R. Samuel, Acharya, and Rao 2020; Venu, Raju, and 

Subramani 2019; M. S. Samuel et al. 2019; Venu, Subramani, 

and Raju 2019; Mehta et al. 2019; Sharma et al. 2019; Malli 

Sureshbabu et al. 2019; Krishnaswamy et al. 2020; 

Muthukrishnan et al. 2020; Gheena and Ezhilarasan 2019; 

Vignesh et al. 2019; Ke et al. 2019; Vijayakumar Jain et al. 

2019; Jose, Ajitha, and Subbaiyan 2020). Now the growing 

trend in this area motivated us to pursue this project. 

In many Universities digital education has been adapted 

but proper guidance and awareness of students was not 

followed by the instructors. This leads to a low graduation 

rate of students. If proper identification of student’s 

performance was done, the overall graduation rate will 

increase. The main reason for the reduced graduation rate 

was student withdrawal of course at an early stage and also a 

high failure rate. To avoid these two drawbacks in digital 

education, students need to be identified, and proper 

motivation and effective teaching can be done. The 

prediction of accuracy percentage of At-risk students can be 

done with dynamic dataset in order to predict with more 

accuracy rather than working only with static datasets. Based 

on the literature review it can be inferred that many machine 

learning algorithms have been widely used for predicting the 

accuracy percentage of At-Risk students. Logistic Regression 

machine Learning algorithm mainly concentrates on 

classification and also uses Novel sigmoid function for 

mapping predicted variables to probabilities which improves 

the prediction of accuracy percentage for At-risk students. 

 

Materials and Methods 

The study setting of the proposed work is done in 

Saveetha School of Engineering. The number of groups 

identified for the study is two. The group 1 is Logistic 

Regression and group 2 is GLM. Logistic Regression algorithm 

and GLM algorithm was iterated at different times with a 

sample size of 20 (Al-Shabandar et al. 2019), 95% confidence 

interval and pretest power of 80% (“Sample Size Calculator” 

n.d.). 

The real time dataset used was the Harvard dataset. The 

input dataset for the proposed work is Harvard dataset.csv 

collected from kaggle.com (Narang n.d.). The main attributes 

used to predict the At-risk students accuracy (%) was “grade” 

(The grade of the student), “Viewed” (No. of Videos Viewed), 

“certified” (The certification student received). “Course_id” 

refers to the ID number of the course, “year” refers to the 

student year of birth, “explored” refers to student view to 

the home page, “Final_cc_name” refers to student location, 

“LOE_DI” refers to student degree, “start_time_DI” refers to 

student start time of activity, “Last_event_DI” refers to 

students end time of activity, “n_events” refers to number of 

events a student participated, “nplay_videos” refers to 

number times a video played by a student, “nchapters” refers 

to number of chapters, “nforums_post” refers to number of 

quizzes a student participated, “gender” refers to gender of 

the student. Above all refers to the attribute description of 

the Harvard dataset. 

After the collection of dataset, it was uploaded and 

preprocessing was done. All the null values and missing values 

present in the dataset was removed by cleaning the data. 

After cleaning, the feature extraction was applied to perform 

vectorisation, the data which are strings, words and 

characters was changed to values 0 and 1. Example for female 

gender attribute the value assigned was 1 and for male gender 

attribute value assigned was 0. The obtained data set without 

null values and missing values was well qualified for 

evaluating the machine learning algorithm. After 

preprocessing the dataset was splitted into two parts and 

evaluated as a 25% testing set and 75% training set. The 

proposed algorithm Logistic Regression was implemented by 

evaluating the train and test set and the required accuracy 

percentage was predicted. The learning process of GLM and 

Logistic Regression is given below. 

GLM is a statistical method that comes under supervised 

machine learning algorithms which assumes every number of 

observations has a distribution like polynomial, binomial, 

gamma, average (Al-Shabandar et al. 2019). GLM gives a 

continuous output of dependent variables by evaluating 

independent variables and performs linearly. 

𝜂i  = 𝛽0+𝛽1𝑋1 + 𝛽2𝑋2+. . . . . . . 𝛽𝑛𝑋𝑛       (1) 

Where 𝑋1,𝑋2…..𝑋𝑛 are the observations and predictive 

variables, 𝜂i is the dependent variable as shown in equation 

(1). 𝛽0 is the intercept and 𝛽𝑖  are the coefficients 

The main attributes of the dataset grade, viewed and 

certified, was used for predicting the accuracy percentage of 

At-risk students using GLM Machine Learning Algorithm as 

shown in Fig. 1. 

 

 
Fig. 1. Algorithm for GLM (X,Y) 
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Logistic Regression is one of the most important 

supervised machine learning algorithms. Logistic Regression 

mainly concentrates on classification example 0 or 1 and pass 

or fail. It helps in predicting categorical dependent variables 

using independent variables. It uses the Novel sigmoid 

function for mapping the predicted values to probabilities and 

decides on which values to pass as output and not to pass. 

The general equation for Logistic regression was shown in 

equation (2). 

𝑙𝑜𝑔[𝑦/𝑦 − 1]  =  𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2+. . . . . . . +𝑏𝑛𝑥𝑛    (2) 

Where  𝑥1 ,𝑥2,.....𝑥𝑛  are the observations and predictive 

variables 

𝑙𝑜𝑔[𝑦/𝑦 − 1] is the sigmoid function 

𝑏0 is the intercept and 𝑏𝑖 are the coefficients 

The main attributes of the dataset grade, viewed and 

certified, was used for predicting the accuracy percentage of 

At-risk students using Logistic Regression Machine Learning 

Algorithm as shown in Fig. 2. 

 

 
Fig. 2. Algorithm for Logistic Regression (X,Y) 

 

Accuracy was calculated for Logistic Regression and GLM 

based on equation (3). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃 + 𝑇𝑁/𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁      (3) 

Where TP, is the number of true positives classified by 

the algorithm 

TN, is the number of true negatives classified by the 

algorithm 

FP, is the number of false positives classified by the 

algorithm 

FN, is the number of false negatives classified by the 

algorithm 

The software tool used to evaluate the Logistic 

Regression and GLM algorithms was Google colab© with python 

programming language. The hardware configuration was intel 

core i5 processor with a RAM size of 8GB. The system type 

used was 64-bit, OS, X64 based processor with HDD of 917 GB. 

The software configuration includes windows 10 operating 

system. 

From the total sample size 75% of the data with features 

extracted is trained in the Logistic Regression and GLM. For 

training the model involves a number of iterations to get 

better performance. After training the algorithm, random 

test data is given to the algorithm. 

The work was statistically analysed using the Statistical 

Package for the Social Sciences (SPSS) (“SPSS Software” n.d.) 

and Goggle collab©. Descriptive statistics for mean, standard 

deviation and standard error was carried out for Logistic 

Regression and GLM algorithm. The independent variables are 

course id, user id, year, semester, viewed, certified, grade, 

explored, final_cc_name, start_time_DI, end_time_Dl, 

nevents, ndays_act, nplay_videos, nchpaters, nforums_post, 

incomplete, age. The dependent variable was Accuracy. 

Independent Sample t-test was performed to compare the 

performance of algorithms. 

 

Results 

In Table 1, it was observed that Logistic Regression 

algorithm and GLM algorithm were run at different times in 

Google colab© with a sample size of 20 and accuracy was 

calculated. Logistic Regression appears to have better 

accuracy than the GLM algorithm. In Table 2, an Independent 

Sample T-test was performed to compare the accuracy of 

Logistic Regression and GLM algorithms and a statistically 

significant difference was noticed P < 0.001 with 95% 

confidence interval showed that our hypothesis holds good. 

The mean difference of Accuracy was identified as 2.13200. 

In Table 3, the statistical analysis of 10 samples was 

performed, Logistic Regression obtained 0.68733 standard 

deviation with 0.21735 standard error while GLM algorithm 

obtained 1.41033 standard deviation with 0.44599 standard 

error. With respect to changes in the input values 

(independent variables) the corresponding output values 

(dependent variables) also changes (Table 2). Accuracy 

percentage of Logistic Regression (94.48) and GLM (92.76) 

infers that Logistic Regression appears to have better 

accuracy than GLM (Fig. 3) and simple mean bar graph shows 

the standard deviation of Logistic Regression is slightly better 

than GLM (Fig. 4). 

 

Table 1. Predicted accuracy of At-risk students (Logistic 

Regression accuracy of 94.48% and GLM accuracy of 92.46%) 

Sl. No 
Sample 
Size 

Logistic Regression 
Accuracy (%)   

GLM 
Accuracy (%) 

1 21 93.79 93.45 

2 31 93.82 90.03 

3 41 93.50 93.14 

4 51 94.18 93.19 

5 61 92.11 92.38 

6 71 94.12 89.76 

7 81 94.48 92.76 

8 91 93.82 93.85 

9 100 93.89 92.03 

10 120 93.97 92.24 
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Table 2. Independent Sample T - test Result is applied for dataset fixing confidence interval as 95% and level of significance as 0.05 

(Logistic regression appears to perform significantly better than GLM with the value of p=0.000) 

 

Levene’s test for 
equality of variances 

t-test for Equality of Means 

F Sig. t df 
Sig. 
(2-
tailed) 

Mean 
Difference 

Std.Error 
Difference 

95% confidence 
interval of the 
difference 

Lower Upper 

Accuracy   Equal variances 
                 Assumed 
                 Equal variance 
                 not Assumed       

6.602 .019 
4.29 
 
4.29 

18 
 
13.04 

.000 
 
.001 

2.13200 
 
2.13200 

  .49613 
 
  .49613 

1.089 
 
1.060 

3.17433 
 
3.20343 

Loss      Equal variances 
             Assumed 
             Equal variance 
             not Assumed 

6.569 .020 
-4.29 
 
-4.29 

18 
 
13.06 

.000 
 
.001 

-2.13200 
 
-2.13200 

.49638 
 
.49638 

-3.175 
 
-3.204 

-1.0901 
 
-1.0611 

 

Table 3. Group Statistical analysis of Logistic Regression and GLM. Mean accuracy value, Standard deviation and Standard Error 

Mean for Logistic Regression and GLM algorithms are obtained for 10 iterations. It is observed that the Logistic Regression algorithm 

performed better than the GLM algorithm. 

Algorithm N Mean Std. Deviation Std. Error Mean 

Accuracy   Logistic Regression 
                 GLM 

10 
10     

94.3730 
92.2410 

.68733 
1.41033 

.21735 

.44599 

Loss          Logistic Regression 
                GLM 

10 
10 

5.6260 
7.7590 

.68733 
1.41033 

.21735 

.44599 

 
Fig. 3. Comparison of accuracy percentage (Logistic Regression got more accuracy of 94.48% than GLM accuracy of 92.46%) 

 

 
Fig. 4. Comparison of Logistic Regression and GLM in terms of mean accuracy. The mean accuracy of Logistic Regression is better 

than GLM and the standard deviation of Logistic Regression is slightly better than GLM. X Axis: Logistic Regression vs GLM Algorithm, 

Y Axis: Mean accuracy of detection ± 1 SD 
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Discussion 

In this research work Logistic Regression and GLM 

algorithm was analysed for predicting the accuracy 

percentage of At-risk students. It is observed that Logistic 

Regression appears to have better accuracy (94.48 %) 

compared to GLM (92.76 %). The Novel sigmoid function maps 

the predictions to the probabilities of At-Risk students based 

on Certified, grade attributes of the dataset which helped in 

improving the accuracy percentage. The results show the 

evidence there is a statistically significant difference 

between the Logistic Regression and GLM algorithms. 

In this paper (Al-Shabandar et al. 2019; Chaplot, Rhim, 

and Kim 2016; Xing and Du 2019), feedforward neural 

networks was implemented with an accuracy percentage of 

80.5%. (Sun et al. 2019; Al-Shabandar et al. 2018), CNN 

combined with RNN and predicted an accuracy percentage of 

92.6%. (Al-Shabandar et al. 2018), 75% of accuracy was 

predicted using the Data Driven approach. (Minaei-Bidgoli et 

al., n.d.), KNN was implemented with an accuracy of 82.3%. 

(Y. Chen et al. 2020), explained the prediction model and the 

results demonstrated an accuracy of 90.4%. (Geigle and Zhai 

2017), 90.3% of accuracy was predicted using two-layer 

hidden Markovs. (Gardner and Brooks 2018) SVM and GLM 

were implemented with an accuracy of 89.2% and 91.4% 

respectively. (J. Chen et al. 2019) 85.96% of accuracy was 

predicted using a decision tree and extreme learning 

machine. 

Our institution is passionate about high quality evidence 

based research and has excelled in various fields 

((Vijayashree Priyadharsini 2019; Ezhilarasan, Apoorva, and 

Ashok Vardhan 2019; Ramesh et al. 2018; Mathew et al. 2020; 

Sridharan et al. 2019; Pc, Marimuthu, and Devadoss 2018; 

Ramadurai et al. 2019). We hope this study adds to this rich 

legacy. 

The attributes that affect the accuracy percentage of At-

risk students in this research work are course_ID, 

final_cc_cname_DI, viewed, year, nforums_post, explored, 

gender, Last_event_DI, LOE. The attributes that mainly 

concentrated to increase the accuracy percentage were 

Certified and grade.Logistic Regression appears to have 

better Accuracy compared with previous research articles 

discussed. This proposed work can be implemented in 

universities, schools and in online course platforms for giving 

intensive support to students. The limitation of the proposed 

work is that one of the attributes in the Harvard dataset used 

for predicting the accuracy of At-risk students is “Viewed” 

which doesn’t predict the exact accuracy of At-risk students. 

In future work, if the dataset has attributes like attendance, 

student_feedback, student_interest there might be a chance 

to predict more accuracy percentage of At-risk students. 

 

Conclusion 

In this proposed work, prediction of accuracy percentage 

of At-risk students based on failure and withdrawal rate is 

performed using Logistic Regression appears to have improved 

accuracy of 94.48% when compared to GLM algorithm. 
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