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A B S T R A C T 

The problems in bathymetry measurement often have gaps or ‘holes’ within the data. As a result, 
hydrographic surveyors often have sparse data, and even though the data is dense and equal distances, 
there is still a gap in time. This paper present coastal depth extraction from satellite images. The 
problem encountered during the bathymetry derivation process and the problem related to the space, 
distribution and quantity of the Single-beam echo sounder (SBES) data. Therefore, the idea of using 
spatial interpolation could be a suitable approach in solving the problems. This study intends to produce 
Satellite-Derived Bathymetry (SDB) from Landsat 8 images at Pantai Tok Jembal, Terengganu, Malaysia. 
The proposed method by first interpolating the SBES point in the calibration data using spatial 
predictors, i.e. Inverse Distance Weightage, Thin-Plate Spline, Spline with Tension, Universal Kriging, 
Natural Neighbor, and Topo to Raster. Second, the raster output created from the interpolation process 
then converts into the point shapefile. Third, intersect function use to eliminate the point whereby 
not in the domain. Finally, the newly generated SBES points in calibration data ready to apply at the 
SDB computation process, generating SDB. In continuation, a comparative analysis conducted between 
six SDB results generated using each different newly generated calibration data. The result indicates 
SDB utilizes with Universal Kriging-newly generated calibration data (RMSE: 0.718 m) was the best 
result. To summarise, this study has successfully attained the research objectives by utilizing the newly 
generated calibration data in generating SDB. The task of spatial interpolation recreates the SBES data 
from irregular space and short data to uniform space and long data, which facilitate in pixel to point 
value extraction and help refine the bathymetry derivation process. Furthermore, the proposed method 
suitable to be used when the data are not applicable or limited. 
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Introduction 

The problems in bathymetry measurement often have 

gaps or ‘holes’ within the data. As a result, hydrographic 

surveyors often have sparse data, and even though the data 

is dense and equal distances, there is still a gap in time. A 

single-beam echo sounder (SBES) system, a bathymetric 

acquisition technique, is used to provide the bathymetric 

data. 

 

* Corresponding author: Saiful Aman Hj Sulaiman 

 

Other than work-related, in research studies, SBES data 

commonly use in Satellite-derived Bathymetry (SDB) related 

studies [21]-[26], [32], [36]-[37]. In this study, SBES data as a 

ground truth data, use in generating SDB at Pantai Tok 

Jembal, Terengganu, Malaysia and the importance of the data 

use especially during the SDB computation process. However, 

the major problem in SBES data provided is in sparse and 

irregular space, creates a data gap and ‘holes’ within data, 

which leads to missing important bathymetry information. 
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Based on the SBES data provided, 62% of the SBES survey 

area (6.66 km²) at Pantai Tok Jembal cover the bathymetry 

information, while the rest 38% were not. The significant 

contribution of 38%, missing important bathymetric 

information is firstly from the uneven and irregular sampling. 

The measurement using SBES system, the depth of the 

seafloor is measured using the two-way journey time of a 

sound wave sent to and from the seafloor [39], and SBES 

disadvantages are only has a small seabed fraction [7], i.e., 

the measurement using a single transducer, ping by ping at a 

time, hence the bathymetry data collected in a sparse 

interval. Besides, the speed and time variations during the 

ship measurement led to the observation taken at different 

positions each time, thus creating an inconsistent distance 

between the data point. Secondly, there are variations in the 

ship track's design, with several sounding line and crossline 

created. Surveyor tends to minimize the line to reduce time 

and cost, leading to a gap of data interval. Thirdly, a possible 

error can be the equipment failure during onboard 

measurement. The unintended or intended system shutdown 

or weak signals from the system leaves an information gap 

[8]. And finally, unintended ‘holes’ created within the SBES 

data, whereby a shallow area located at 0.5 km from the 

Pantai Tok Jembal shoreline. This area has narrow space 

navigation, i.e., the small space between the bottom of the 

ship or the instrument with a seabed area. Space navigation 

different in each variation design of ship use. The smaller the 

ship, the better to use but still limited to the particular depth 

extent, and because the ship cannot access a shallower area, 

leave the area unmeasured. Furthermore, it is necessary to 

avoid the shallower area to avoid ship and instrument 

grounding to keep the safe navigation. 

This paper present coastal depth extraction from 

satellite images. The problem encountered during the 

bathymetry derivation process whereby the pixel to point 

value extraction undertaken. The irregular space of SBES data 

and the 15 m resolution of Landsat images, causes more than 

one SBES point with different depth value fit into the one 

Landsat pixel, thus, due this problem create uncertainty. 

Also, the unintended ‘holes’ within the SBES data, reducing 

quite an amount of data, which is essentially needed, since 

SBES data use as ground truth data. The lack of ground truth 

data among the obstacles faced in the bathymetry derivation 

process. When the data is insufficient, the bathymetry 

estimation works well as a rough estimation as happen in [13] 

study. Besides, according to [38], the accuracy depended on 

the quality and quantity of ground truth data. In terms of 

quantity of data, a study conducted by [19] compares the 

accuracy of Lyzenga's extension method evaluating with 

Acoustic Doppler Current Profiler (ADCP) and Multi-Beam Echo 

Sounder (MBES). Two evaluations made, firstly with 200 

points, and secondly, with 500 points of ground truth data. 

The result concludes that the increasing number of ground 

truth data can improve and gives a better result. While, in 

terms of quality of data, completing the data quality traits is 

a reliable inaccuracy, comprehensive in information, 

relevance in information, and timelessness [31]. On top of 

that, the way data supposed to be dense, regularly space and 

long, and this has been explained by [8], whereby most 

analysis procedures are designed for long and dense sample 

data along with equally spaced measurement in time or 

space. Besides, the wealth of information applies to regularly 

spaced and abundant measurement. Therefore, the idea of 

using spatial interpolation could be a suitable approach in 

solving the problems. 

This study intends to produce SDB from Landsat 8 images 

at Pantai Tok Jembal, Terengganu, Malaysia, within the 

extended survey area (49.69 km²) [25]-[26], using bathymetry 

algorithm, Log-ratio Transform. A bit modification of the 

bathymetry derivation process whereby at the SDB 

computation process. The proposed method by first 

interpolating the SBES point in the calibration data using 

spatial predictors, i.e. Inverse Distance Weightage, Thin-

Plate Spline, Spline with Tension, Universal Kriging, Natural 

Neighbor, and Topo to Raster. Second, the raster output 

created from the interpolation process then converts into the 

point shapefile. Third, intersect function use to eliminate the 

point whereby not in the domain. Finally, the newly 

generated SBES points in calibration data ready to apply at 

the SDB computation process, generating SDB. The proposed 

method uses spatial predictors interpolating the SBES points 

in the calibration data. The task of spatial interpolation 

recreates the SBES data from irregular space and short data 

to uniform space and long data, which facilitate in pixel to 

point value extraction and help refine the bathymetry 

derivation process. 

Furthermore, three objectives will guide this paper: first, 

to evaluate the spatial interpolation method use in 

interpolating calibration data. Second, generating SDB of the 

extended area using newly generated calibration data 

(produced from a different spatial predictor). Third, to 

conduct an accuracy assessment of SDB of the extended area. 

For the analysis, there are three stages of analysis conducted 

connecting the objective in this research: firstly, evaluate the 

pattern error of spatial prediction in the production of newly 

generated calibration data. Secondly, the evaluation of SDB 

generated using newly generated calibration data. Thirdly, 

evaluate the result of accuracy assessment of SDB at the 

extended area. 

 

Material & Methods 

Study Area & Data Used 

Pantai Tok Jembal locates at Terengganu, Malaysia, at 

approximately 5º24'00" N, 103º00'00" E [25]-[26]. This location 

was chosen as the study area to derive water depth—the study 

area located close to the Sultan Mahmud Shah Airport and the 

University of Malaysia Terengganu. Apart from local or tourist 

attractions, this area has 400 households living near the 

coastal area from Pantai Tok Jembal to Batu Rakit, with a 

distance of 3 km [18]. 
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Figure 1. Showing a study area, Pantai Tok Jembal, Terengganu, Malaysia (latitude: 05º24’00” N, longitude: 103º00’00”E) 

 

In continuation, SBES data, Landsat 8 images and tidal 

data [25]-[26] are three types of data used in this study. First, 

the SBES data collected using SONARLITE Portable Single 

Beam Echo Sounder (vertical) and Astech SP80 Global 

Navigation Satellite System (GNSS) receiver (horizontal), 

surveyed in the year 2017 and this data provided by the 

Department of Irrigation and Drainage Malaysia (DID). The 

horizontal and vertical accuracy was ± 0.3 cm [34] and ± 2.5 

cm [33], and the total SBES points measured were 18283 with 

a range of depth between 1.70 m to 10.49 m below the land 

survey datum. 

Next, Landsat 8 data provided by the Malaysian Space 

Agency (MYSA). On 29th June 2017, the Landsat 8 data was 

acquired (extent: 56-row x 126 columns) at 03:21:23 

(Greenwich Mean Time) and this data has been calibrated and 

orthorectified using Global Land Survey 2000 (GLS 2000) 

ground control points and Digital Elevation Model (DEM) [20]. 

In continuation, Landsat 8 has two push-broom instruments 

which are Operational Land Imager (OLI) and the Thermal 

Infrared Sensor (TIRS), total up eleven bands and each band 

serves a particular purpose. For the OLI sensor, the bands 

include eight multispectral bands with 30 m spatial resolution 

and one panchromatic band with 15 m spatial resolution. 

While the TIRS sensor, two thermal infrared spectral bands 

with 100 m spatial resolution. 

Then, the Department of Survey and Mapping Malaysia 

(DSMM) provide tidal at Cendering, Terengganu, Malaysia with 

latitude: 05º15'50" N and longitude: 103º11'03" E. The data 

from the Cendering tidal station consisted of one-hour tidal 

interval readings with standard deviations of ± 26.7 mins 

(predicted time) and ± 14.1 cm (predicted height) [17]. 

 

Preparation of Newly Generated Calibration 
Data 

SBES data consists of 18283 with a range of depth 

between 1.70 m to 10.49 m below the land survey datum, 

whereby 13.4% (6.66 km²) of the extended area (49.69 km²) 

has covered by SBES data. SBES points in the red region are 

divided into two sets of data: calibration data and evaluation 

data. Calibration data cover 60% of the evaluation area, and 

these data comprised 11191 SBES points used at the SDB 

computation process. While the evaluation data cover the 

whole SBES data, comprised 18283 SBES points, used in the 

bathymetry accuracy assessment. 
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Figure 2. Showing the illustration of the Calibration data in the Calibration Area (yellow region) comprised 11191 SBES points, 

Evaluation data in the Evaluation Area (red region) comprised 18283 SBES points, and Extended Area (white region), the target size 

in generating SDB 

 

The preparation of newly generated calibration data by 

first interpolating the calibration data using spatial 

predictors. Second, the raster output created from the 

interpolation process then converts into the point shapefile. 

Third, intersect function use to eliminate the point whereby 

not in the domain. Then, the newly generated calibration 

data ready to apply at the SDB computation process, 

generating SDB. When creating the output file in each step, 

there would be a shifting position of about 4 m. Hence, to 

avoid shifting, it is advising to set the environment setting as 

the original extent, thus, output with the same extent 

produces. Also, the gridding size must equivalent to Landsat 

images resolution, to ensures one data point fixated at the 

centre in each pixel. 

 

1. Spatial Predictors 

There are six spatial predictors use in interpolating the 

Calibration data, namely Inverse Distance Weightage (IDW), 

Universal Kriging (KRG), Thin-plate Spline (TPS), Spline with 

Tension (ST), Natural Neighbor (NN), and Topo to Raster 

(T2R). Furthermore, each spatial predictor works differently, 

depending on the sample of data, i.e., scattered or well 

distributed and mathematical approach including the 

parameter use. 

 

1.1. Inverse Distance Weightage (IDW) 

IDW is an exact approach that enforces the condition that 

defines the importance of a point more affected by known 

points nearby than points farther apart [4], [28]-[29], [40]. 

IDW calculates the predicted value by averaging all known 

quantities and adding more weight to closer points [28]. The 

Equation (1) generation for the IDW method is: 

𝑧0 =  
∑ 𝑧𝑖

1

𝑑𝑖
𝑘

𝑠
𝑖=1

∑
1

𝑑𝑖
𝑘

𝑠
𝑖=1

  (1) 

Where 𝑧0 is a value measured at points 0, 𝑧𝑖 is the z value 

at a known point 𝑖, 𝑑𝑖 the difference between points 𝑖 and 

point 0, 𝑠 the number of known points in the approximation 

used is, and 𝑘 is the defined power that regulates the degree 

of local influence [4]. The quality of the IDW interpolation 

result depended on the good distribution of known points. 

When the known points are well-distributed, IDW provides 

good results [30]; when the distribution of sample data points 

is uneven, the result will be the opposite [4]. As in [28], one 

of the studies that use the IDW interpolation method. The 

study found that IDW is the most suitable and accurate 

method for the generation of river bathymetry. In another 

study conducted by [5], the generation of Digital Elevation 

Model (DEM) for the lower Athabasca River using two spatial 

interpolation techniques of IDW and Ordinary Kriging (OK), 

the result found that both produced similar results when 

compared. 

 

1.2. Radial Basis Function (RBF): Thin-plate 
Spline (TPS) and Spline with Tension (ST) 

RBF applies to a broad number of interpolation methods. 

The selection of the basis's function or equation determines 

how the surface fits between the control points. The RBF 

method has a parameter that controls the smoothness of the 

surface produced [4], [40]. A previous study by [40] has 

conducted a multiple spatial interpolation technique, 

including IDW, OK, RBF, and Local Polynomial Interpolation, 

and the study aimed to find the best spatial interpolation 

from cross-sectional sounding measurements for mapping 

river bathymetry. The findings showed that both RBF and 

Ordinary Kriging with Anisotropy (OKA) performed the best in 

bathymetry mapping. 

Five RBF methods are available under the Geostatistical 

Analysis Toolbox. TPS and ST choose for this study. TPS for 

spatial interpolation is conceptually similar to splines for line 

smoothing, but TPS applies to surfaces rather than lines. This 

technique provides a surface that moves through the control 

points and at all points has the least possible change in slope. 

This approach, therefore, suits the control points with 

minimal surface curvature [4]. The TPS approximation 

Equation (2) is as follows: 
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𝑄(𝑥, 𝑦) =  ∑ 𝐴𝑖𝑑𝑖
2𝑙𝑜𝑔𝑑𝑖 + 𝑎 + 𝑏𝑥 + 𝑐𝑦  (2) 

Where 𝑥 𝑎𝑛𝑑 𝑦 are the coordinates of the point to be 

interpolated, 𝑑𝑖
2 = (𝑥 −  𝑥𝑖)2 + (𝑦 − 𝑦𝑖)², and 𝑥𝑖and 𝑦𝑖 are the 

𝑥 𝑎𝑛𝑑  𝑦 coordinates of control point 𝑖. TPS consists of two 

components, and the first (𝑎 + 𝑏𝑥 + 𝑐𝑦) represents the local 

trend function, which has the same form as a linear or              

first-order trend surface. Meanwhile, the second component, 

𝑑𝑖
2𝑙𝑜𝑔 𝑑𝑖, represents a basis function, which is design to obtain 

minimum curvature surfaces. Furthermore, the 

coefficients 𝐴𝑖 , 𝑎, 𝑏, 𝑎𝑛𝑑 𝑐 determines by a linear system of 

equations.  

Unlike the IDW process, the TPS predicted values are not 

confined within the range of maximum and minimum values 

of the known points. The steep gradients in data-poor areas 

are a huge TPS concern and are often referred to as 

overshoots. TPS with tension enables the user to control the 

tension on the edges of the surface to pull [4]. Equation (3) 

for TPS with tension is: 

a+ i=1nAiR(di) (3) 

Where 𝑎 represents the trend function, and the basis 

function 𝑅(𝑑) is as shown in Equation (4): 

− 
1

2πφ2 [𝑙𝑛 (
dφ

2
) + c +  K0(a)] (4) 

Where 𝜑 is the weight to be used with the tension 

method, and if 𝜑 is set too close to zero, the approximation 

for ST is similar to the primary TPS method. A larger 𝜑 value 

reduces the plate's stiffness and, hence the range of the 

interpolated values, with the interpolated surface resembling 

the shape of a membrane passing through the control points. 

The effects of the TPS and ST interpolation affect the number 

of known points and the weight parameter. The greater the 

defined number of points, the greater the impact of distant 

points, and the smoother the interpolated surface [1]. 

 

1.3. Universal Kriging (KRG) 

Kriging is a form of spatial interpolation for geostatistics. 

This method differs from other interpolation strategies, as 

Kriging can determine the accuracy of the prediction with 

estimated prediction errors. Universal Kriging assumes that 

the spatial variations in the z values have a drift or trend, 

apart from the spatial correlation between the sample point 

[4], [11], [40]. Besides, Universal Kriging typically 

incorporates a polynomial of the first order or the second 

order in the kriging process [4]. The Equation (5) of Universal 

Kriging linear-drift is: 

𝑀 =  𝑏1𝑥𝑖 +  𝑏2𝑦𝑖 (5) 

Where 𝑀is the drift, 𝑥𝑖 and 𝑦𝑖 are the 𝑥 𝑎𝑛𝑑  𝑦 

coordinates of sampled point 𝑖, and 𝑏1 and 𝑏2 are the drift 

coefficients. Higher-order polynomials do not recommend for 

two reasons, first, after the trend removal, Kriging is 

performed on the residual to assess the uncertainty; a             

higher-order polynomial will leave little variation in the 

residuals. Second, higher-order means a larger number of 

𝑏𝑖coefficients to estimate along with the weights and a 

broader set of equations to be solved simultaneously [4].  

Kriging assumes that the space studies are stationary; 

that is, the joint probability distribution does not change 

throughout the study space. It also assumes a property 

called isotropy; that there is uniformity in every direction. If 

these conditions are challenging to fulfil, the method 

becomes problematic. However, in Universal Kriging, the 

stationary requirement is relaxed. The model's accuracy will 

be limited if the data are not spatially correlated, if limited 

in the spread, or if the number of data points is small [14]. 

Universal Kriging is the interpolator with the anisotropic 

condition, which is highly suggested based on the previous 

studies. As stressed by [6] and [40], the methods that account 

for the anisotropic nature of the riverbed and submerged 

relief, i.e. the preferential direction of the variability of 

bathymetric performance, should be compared, with greater 

weight given to the direction with the significant influence. 

In [40] study proved that when compared Elliptical Inverse 

Distance Weightage, Universal Kriging, and Ordinary Kriging 

with Anisotropy (the interpolators with the anisotropic 

condition) to IDW or Ordinary Kriging (isotropic interpolators), 

the interpolators with anisotropic condition gives a slightly 

better result, which is >5% to 20% reduction in root mean 

square error (RMSE) values. 

 

1.4. Natural Neighbour (NN) 

The NN interpolation tool calculates the nearest sub-set 

of samples to a question point and uses weights to points 

based on the proportionate regions interpolating value. The 

technique is known as Sibson interpolation or 'area stealing’ 

is local and uses only a subset of samples around the point of 

the question. This means that the interpolated heights are 

within the range of the used samples. NN does not deduce 

trends and does not establish hills, troughs, ridges or valleys 

not represented already by input samples. The surface passes 

through the input samples and is smooth in every position, 

except where the input samples are located. When compare 

distance-based interpolator tools such as IDW apply the same 

weights to the most northern and northeast points based on 

their identical distance from the point of interpolation. 

Nevertheless, NN interpolation assigns weights of 19.12% and 

0.38% to the northernmost point and the north-eastern point, 

respectively, based on the overlap percentage [9]. NN is a 

different method in which it does not extrapolate values, 

resolving the interpolation only inwards data domain [29]. As 

[29] has been explained in detail this method. 

 

1.5. Topo To Raster (T2R) 

The T2R is an interpolation method designed specifically 

to create hydrologically accurate digital elevation models 

(DEMs). It is based on Michael Hutchinson's Australian National 

Digital Elevation Model (ANUDEM) program (1988, 1989, 1996, 

2000, 2011). The T2R interpolation method is designed to take 

advantage of the common input data types and the known 

characteristics of the elevation surfaces. This approach uses 

a technique to interpolate finite differences iteratively. 

Without sacrificing the superficial consistency in global 

interpolation methods such as Kriging and Spline, the 
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computational efficiencies of local interpolation methods 

such as IDW interpolation are optimized. T2R is a discerning 

TPS technique for which the roughness penalty is amended, 

allowing the fitted DEM to track sudden changes in terrain 

such as streams, ridges and cliffs [10]. The difference defines 

as the first and second degree of partial derivation f of the 

interpolation method described by the following Equations 

(6), (7), and (8): 

𝐽1(𝑓) =  ∫(𝑓𝑥
2 + 𝑓𝑦

2)𝑑𝑥𝑑𝑦           (6) 

𝐽1(𝑓) =  ∫(𝑓𝑥𝑥
2 + 𝑓𝑥𝑦

2 + 𝑓𝑦𝑦
2 )𝑑𝑥𝑑𝑦 (7) 

To remove the maximum and minimum peak effect 

(excessively smooth or peaked soil) and to achieve a practical 

surface terrain 𝐽1 and 𝐽2 must be minimized. A very smooth 

surface is obtained if only 𝐽2  is minimized, and vice versa, if 

only,𝐽1 is minimized, maximum and minimal peaks occur [2], 

[10]. [35] propose that a roughness penalty is imposed when 

taking the cell resolution into account. 

𝐽(𝑓) = 0.5ℎ−2𝐽1(𝑓) + 𝐽2(𝑓) (8) 

Essentially, T2R is a combined form of interpolation that 

uses a discrete technique based on degree 𝑚 and 𝑘 

smoothness spline polynomial functions, where the roughness 

can be changed to allow DEM to be produced with sudden 

changes in the ground, such as areas affected by tides, ridges 

or cliff depths. Area maximums or local minimums are 

sometimes considered these landforms. Of the present tense, 

point elevation features are used. 

Furthermore, [2] one of the studies that use the T2R 

interpolation method. The study aimed to test four 

interpolation methods to identify the most appropriate 

method, which would give an accurate description of the 

riverbed, based on single-beam bathymetric measurements. 

The four interpolation techniques selected were IDW, RBF, 

KRG, and T2R. The findings showed that T2R has the best 

performance and the most accurate interpolation method to 

be used when creating a DEM for a given number of points and 

grid, the result closely followed by the KRG, RBF, and IDW. 

 

Pre-processing Stage 

The bathymetry derivation process initially begins with 

pre-processing stage and three-step involves includes         

pan-sharpening, subsetting and atmospheric correction. 

First, the pan-sharpen process of Landsat images 

conducted by merging 15 m resolution panchromatic data 

with 30 m resolution multispectral data. The low spatial 

resolution spectral band must fall within the panchromatic 

band. Otherwise, the images will not be included in the 

resampling process. Other than that, both multispectral and 

panchromatic data must be in the same projection to ensure 

both images are aligned in the same position. The                    

pan-sharpening processing undertaken to improve the 

information extraction [27]. Besides, the effect of pan-

sharpening is best on images with homogenous surface 

features such as a flat desert or water surface, an advantage 

in this research since it focuses on the water surfaces [15]. 

Next, subset the image according to the area and position 

of the created region of interest (ROI). This strategy to 

focuses on the area of research, reduces the workload of an 

entire image [23], reducing time and enhancing productivity. 

Then, the atmospheric correction was conducted to 

improve the depth model's performance and minimize the 

atmospheric effects that alter the actual radiance data, 

whereby the satellite sensor's actual representation [3]. Dark 

Object Subtraction (DOS) assumes that dark objects reflect 

no light and that any values greater than zero must be due to 

atmospheric scattering. By subtracting these values from 

each pixel in the band, the scattering is eliminated. On the 

Landsat image, a dark subtraction was performed on an area 

of deep oceanic pixels [16]. The limitation of this step due to 

the presence of a cloud covers the information underneath 

and creates a shadow pixel. The shadow pixel appears dark 

colour pixel, which can mistake as an oceanic pixel. DOS 

atmospheric correction only removes the scattering and 

brightening the images. This method is ineffective in 

removing cloud, cloud shadow, and haze. However, since the 

cloud and haze are less present in the Landsat images, thus, 

less effect on the bathymetry performances. 

 

SDB Computation 

The newly generated calibration data are applied under 

this stage. The depth retrieval using Log-ratio Transform 

method, by first, rationing natural logarithm (ln) blue 

againstln green band. Second, linear regression performed 

between the depth of newly generated calibration data and 

the ln blue-green ratio value. Third, the equation of Z 

structured from the regression line and  𝑚0 and  𝑚1 values 

obtained. Forth, SDB computes using the complete structure 

of the Z equation. The depth estimation Equation (9) is as 

follows: 

Z = 𝑚1 * 
𝑙𝑛 (𝑛𝐿(𝜆2))

𝑙𝑛 (𝑛𝐿(𝜆1))
 - 𝑚0        (9) 

Where: 

Z = depth estimation, 

n, 𝑚1 and 𝑚0 = the constant-coefficient for the model, 

and 

𝐿(λ1 ) and 𝐿(λ2 ) = reflectance for spectral λ1 and λ2 . 

Log-ratio Transform method limited success in high 

variable bottom type [12], which not in the case of Pantai Tok 

Jembal, since this study area is a sandy bottom type. Besides, 

although this area prone to erosion, luckily, the water 

condition at this area still in good condition. This is because, 

during the satellite images capture on 29th June 2017, during 

the southwest monsoon, which is the dynamic ocean not 

strong as during northwest monsoon. Thus, the disturbances 

from substances suchlike sediment in blue-green-ratio not 

significantly high and the Log-ratio Transform method still 

reliable to use in this type of water condition. 

In continuation, tidal data used under this section to 

bridge the time gap and vertical datum. Tidal correction 

conduct before and after SDB obtain and it is because SBES 

data originally from Mean Sea Level (MSL) and the Landsat 
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image capture during the tide presence. Initially add tide 

value to the newly generated calibration data, before 

applying this data at the SDB computation process. After the 

SDB computation process performs and the SDB produced, SDB 

needs to subtract with tide values to reduce the depth of SDB 

back in MSL. Finally, the final step is masking. The masking 

function separates the water pixel from the land pixel since 

the SDB focuses on the water area. 

 

Data Analysis 

Under this section, evaluation data comprised 18283 SBES 

points used to validate the SDB generated from Landsat 8 

images using the Log-ratio Transform method. The statistical 

analysis conducted is Root Mean Square Error (RMSE) and 

coefficient determination (R²) between SDB and evaluation 

data, along with maximum depth, minimum of depth, an 

average of depth, and standard deviation. Besides, there are 

three stages of analysis conducted connecting the objective 

in this research: firstly, evaluate the pattern error of spatial 

prediction in the production of newly generated calibration 

data. Secondly, the evaluation of SDB generated using newly 

generated calibration data. Thirdly, evaluate the result of 

accuracy assessment of SDB at the extended area. 

 

Result & Discussion 

Preparing the Newly Generated Calibration Data 

Figure 3 below shows the irregular space of calibration 

data in the calibration area (yellow region), with a void area 

before the interpolation process conducted. Six spatial 

predictors, namely, Inverse Distance Weightage, Universal 

Kriging, Thin-plate Spline, Spline with Tension, Natural 

Neighbour, and Topo to Raster, were used to interpolate the 

calibration data. 

 

 

Figure 3. showing the Calibration data before interpolation carry out 

 

Table 1. Summary of parameters used in the spatial interpolation method used to interpolate calibration data 

Parameterization Method 

Output cell size: 15 m, Power: 2, Search radius (optional): variable, Number of points: 12 IDW 

Output cell size: 15 m, Universal Kriging method: universal, Semi-variogram model: linear with linear drift, Search 

radius (optional): variable, Number of points: 12 
KRG 

Output cell size: 15 m, Search Neighbourhood (optional): standard, major semiaxis, and minor semiaxis is automatic, 

Angle: 0, RBF: Thin-plate Spline 
TPS 

Output cell size: 15 m, Spline type: tension, Weight: 0.1, Number of points: 12 ST 

Output cell size: 15 m NN 

Output cell size: 15 m T2R 

 

Interpretation of Table-1 

The raster output produces under the interpolation 

process based on the stated parameter and the different 

number of parameter use depending on the spatial 

interpolation method. Also, these parameters determine the 

raster outcomes. 

After the six interpolation methods were successfully 

carried out, the results were six raster output with a different 

interpolation pattern, as illustrated in Figure 4. Next, the 

evaluation process was conducted on the six raster output 

using the evaluation data and the validation results, which 

also can be found in Figures 4 and 5. 
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Figure 4. Showing the raster output produced after applying six spatial predictors on the calibration data: (a) SBES Interpolated – 

Inverse Distance Weightage (b) SBES Interpolated – Universal Kriging (c) SBES Interpolated – Thin-plate Spline (d) SBES Interpolated 

– Spline with Tension (e) SBES Interpolated – Natural Neighbor and (f) SBES Interpolated – Topo to Raster 
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Figure 5. Showing the evaluation of error graph for six spatial predictor methods interpolating the calibration data: Topo to Raster 

(T2R), Inverse Distance Weightage (IDW), Spline with Tension (ST), Universal Kriging (KRG), Natural Neighbor (NN), and Thin-plate 

Spline (TPS) 

 

Based on Figures 4 and 5, evaluation of error in six raster 

output produced after applying six spatial predictors on the 

calibration data. The results showed that the Topo to Raster 

interpolation technique gave a satisfactory result with the 

lowest RMSE value (0.820 m). This finding is similar to those 

in earlier studies [2] in which the Topo to Raster method has 

consistently given satisfactory results in the interpolation 

process. 

The Inverse Distance Weightage method has a limitation 

in the range of maximum and minimum values of the known 

points, while Thin-plate Spline and Spline with Tension under 

the RBF do not, for the surface smoothing concept. When 

Inverse Distance Weightage compares with the RBF method, 

the results indicated that Inverse Distance Weightage (RMSE: 

0.980 m) performed significantly better than Thin-plate 

Spline (RMSE: 100.680 m) and better than Spline with Tension 

(RMSE: 1.164 m).  

The major problem in Thin-plate Spline is that it tends to 

overshoot, especially in low data areas. To overcome this 

problem, the Spline with Tension method use to correct the 

overshoots that occur. This method allows the user to control 

the tension to pull on the edge of the surface. As presented 

in Figure 5, the Thin-plate Spline without the tension 

produced an RMSE of 100.680 m, but when tension was 

applied, the RMSE value lowered to 1.164 m (Spline with 

Tension). 

Next, the Universal Kriging method produced a 

significantly better result than Natural Neighbour and Thin-

plate Spline with an RMSE of 2.867 m. This method is 

recommended [6] and [40]because it considers the 

anisotropic nature in the bathymetric data during 

interpolation, which is essential. At the same time, the 

Natural Neighbour interpolation method (RMSE = 4.433 m) 

produced a significantly better result than the Thin-plate 

Spline. Even though this method is useful in local 

interpolation, it is not practical for extrapolating, because 

this method does not extrapolate values and only interpolates 

the data domain inwards [39]. 

In continuation, after interpolating the SBES point in the 

calibration data, the raster output produces from the 

interpolation process, i.e., IDW, TPS, ST, KRG, NN, and T2R, 

then convert into the point shapefile. Then, intersect 

function use to eliminate the point whereby not in the 

domain. Finally, the newly generate calibration data ready to 

apply at the SDB computation process, generating SDB. Based 

on Figure 6 shown the newly generated calibration data. The 

difference between the new calibration data and the older 

calibration data (Figure 3) was the SBES points arrangement. 

In the newly generated calibration data, the SBES points 

systematically arranged. Thus, this will facilitate pixel-to-

point extraction value, whereby one pixel represented one 

point, hence, there will be no pixel left out during the 

extraction process. 

 

 
Figure 6. Showing the Calibration data after interpolation carry out 
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SDB Computation 

For computing the SDB, the regression process conducted 

between depth of newly generated calibration data and the 

ratio of  ln Blue to ln Green to obtain the 𝑚0, 𝑚1. Then, after 

all the values obtained and the Z equation complete 

structured, Z can be computed. 

 

Table 2. Summarize the 𝑚0 and  𝑚1value and the complete structure of the equation to compute Z by each method 

Newly generated 

calibration data 
𝒎𝟎 𝒎𝟏 

Equations to compute 𝒁 resulting from regression line between depth of newly 

generated calibration data and the ratio of Ln Blue to Ln Green. 

IDW -1.01 5.41 𝑍 =  − 1.01 ∗  ((𝑥 −  0.51) / 0.0604) –  5.41 

KRG -1 5.4 𝑍 =  − 1 ∗ ((𝑥 –  0.51) / 0.06) –  5.4 

TPS -0.986 5.29 𝑍 =  − 0.986 ∗ ((𝑥 –  0.51)/0.0604) –  5.29 

ST -0.99 5.5 𝑍 =  − 0.99 ∗ ((𝑥 –  0.51)/0.06)  −  5.5 

NN -17.092 3.3119 𝑍 =  − 17.092 ∗ (𝑥)  +  3.3119 

T2R -1 5.4 𝑍 =  − 1 ∗ ((𝑥 –  0.51) / 0.06) –  5.4 
a𝑥 = the reflectance value from rationing ln Blue and ln Green 
b𝑍 = SDB 

 

Interpretation of Table-2 

The obtaining value𝑚0 and  𝑚1 value complete the Z 

equation and the Z equation differ in each set of newly 

generated calibration data, thus, there will be distinct in SDB 

result. 

By using the equation as presented in Table 2, SDB 

generated in an extended area of 49.69 km². The result of 

SDB using the newly generated calibration data shown in 

Figure 7. 

 

 
Figure 7. Illustrates the six SDB results generated from Landsat 8 using the log-ratio transform method and calibrated using each 

different newly generated calibration data. The colours depicted on the bathymetric mapping indicates the depth contour, and all 

the SDB results showed a slightly similar depth contour pattern. 

 

Bathymetry Accuracy Assessment 

Comparative analysis conduct between the six SDB results 

generated each different newly generated calibration data.  

The accuracy of SDB then assesses using two statistical 

indices, i.e., R² and RMSE. The summarise results in Table 3. 

The R² for the regression model of log-ratio transform 

calibrate with six newly generated calibration data and all the 

SDB results gave a similar value of 0.919 m, which is high. The 

obtain high value of R² is because the regression model 

accounts for more of the variance, in which the data points 

are closer to the regression line. As presented in Figure 8, 
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shows the scatter plots between bathymetry from SDB and 

bathymetry from evaluation data. 

 

 
Figure 8. Showing the two-dimensional scatter plots between bathymetry from evaluation data and bathymetry from SDB calibrate 

using six newly generated calibration data: (a) Inverse Distance Weightage, (b) Universal Kriging, (c) Thin-plate Spline, (d) Spline with 

Tension, (e) Natural Neighbour and (f) Topo to Raster. 

 

Table 3. Statistical results of SDB generated using the six Newly Generated Calibration Data 
 SDB-IDW SDB-KRG SDB-TPS SDB-ST SDB-NN SDB-T2R SBES 

RMSE 0.738 0.718 0.837 0.736 0.727 0.730  

R² 0.919 0.919 0.919 0.919 0.919 0.919  

Min –8.516 –8.616 –8.281 –8.465 –8.575 –8.546  

Max –0.218 –0.079 –0.218 –0.403 –0.133 –0.187 –1.70 

Mean –5.133 –5.135 –4.994 –5.178 –5.133 –5.138 –10.49 

Median  –5.134 –5.136 –4.995 –5.179 –5.134 –5.139 –5.52 

SD 1.269 1.306 1.233 1.233 1.291 1.279  

Cal. Pts 17061  

Eva. Pts 18283  

 

 
Figure 10. Showing the evaluation of error graph for six SDB results calibrated using the newly generated calibration data: Universal 

Kriging (SDB-KRG), Natural Neighbor (SDB-NN), Topo to Raster (SDB-T2R), Spline with Tension (SDB-ST), Inverse Distance Weightage 

(SDB-IDW), and Thin-plate Spline (SDB-TPS). 

 

Interpretation of Table-3 

The results showed an increase in the RMSE value from 

SDB-KRG (0.718 m), SDB-NN (0.727 m), SDB-T2R (0.730 m), 

SDB-ST (0.736 m), SDB-IDW (0.738 m) to SDB-TPS (0.837 m). 

Nevertheless, the results showed a significantly small 

difference except for SDB-TPS. The SDB-KRG method gave the 

lowest RMSE value of 0.718 m; therefore, SBD-KRG produced 

the best result. Furthermore, each method shows 
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improvement from bathymetry that depends only 

interpolation process to the bathymetry from SDB that 

calibrates using new calibration data. The improvement can 

be seen first, from SDB-KRG improves 76.7%, second, SDB-NN 

improves 74.5%, third, SDB-T2R improves 10.2%, fourth,           

SDB-ST improves 32.5%, and fifth, SDB-IDW improves 19.8% 

and sixth, SDB-TPS improves 89.2%. 

 

Conclusion 

This paper present coastal depth extraction from 

satellite images. The problem faces when the irregular space 

of SBES data and the 15 m resolution of Landsat imager after 

pan-sharpening causes more than one SBES point with 

different depth value to fit into one Landsat pixel, and 

because of this problem, create uncertainty. Besides, the 

unintended ‘holes’ within the SBES data, reducing quite an 

amount of data, which is essentially needed, since SBES data 

use as ground truth data. Therefore, the solution is by using 

the spatial interpolation method to recreate the SBES points 

into uniformly spaces, long and dense data, then applied at 

SDB computation process. 

As expected, each spatial predictor works differently 

when compared to many related studies. The interpolation 

depended on the focus area, type of sample use, sample size 

and forth. Besides that, the interpolation process also 

concerning the parameterization setting. When undergoing 

the interpolation process, the suitable option must be 

identified carefully because the outcomes are produced 

depending on the parameterization setting, which not in the 

case of this study, since the parameterization choose by 

default. Moreover, the effectiveness of spatial predictors 

depends on how well the known points distribution, the 

amount and also the quality of the data used. In the case of 

data distribution, where the known data are farther away 

than the predicted data, will be less influence, and the error 

will increase.  

Next, the task of spatial predictors is very helpful in 

solving the problem related to space, distribution and 

quantity of the SBES data. The recreation uniform spaces of 

SBES data in ensuring that each Landsat pixel represents one 

correct value of SBES point and the value generated using the 

mathematical algorithm of the spatial predictors. For 

example, given the scenario where five SBES points are close 

together located in a one-pixel box, a mathematical formula 

from spatial predictor calculates and determines one value 

representing the pixel. Also, since each pixel represented 

with one SBES point, thus, no pixel was left out during the 

pixel to point extraction. Other than that, the interpolation 

process increase the number of bathymetry points and the 

addition of data especially at the area where the ‘holes’ 

located, thus, the uniform space and long data help refine the 

bathymetry derivation process. 

Comparative analysis shows the result of SDB when using 

a different set of newly generated calibration data, and based 

on the result indicates that the method gives a significantly 

small difference between the adjacent method, except for 

the SDB-TPS. Therefore, any method that can be used, except 

for Natural Neighbor, need to be aware of the limitation 

which is this method cannot extrapolate outside the 

calibration area. Furthermore, there is an improvement in 

bathymetry from SDB that calibrates using new calibration 

data when compared with a bathymetry that depends only 

interpolation process. 

To summarise, this study has successfully attained the 

research objectives by utilizing the newly generated 

calibration data in generating SDB of the extended area. The 

task of spatial interpolation recreates the SBES data from 

irregular space and short data to uniform space and long data, 

which facilitate in pixel to point value extraction and help 

refine the bathymetry derivation process. Furthermore, the 

proposed method suitable to be used when the data are not 

applicable or limited. 
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